
JSLHU 

JOURNAL OF SCIENCE 
OF LAC HONG UNIVERSITY 
 

ISSN: 2525 - 2186 

Tạp chí Khoa học Lạc Hồng, 2025, 22, 064-070 

 

 

64 JSLHU, Issue 22, September 2025 

 

ỨNG DỤNG MẠNG NƠ-RON CÓ TÍCH HỢP THÔNG TIN VẬT LÝ 

TRONG MÔ PHỎNG TRUYỀN NHIỆT VÀ KHUẾCH TÁN  

KHỐI LƯỢNG 
Trương Văn Tuấn1, Khâu Văn Bích1, Trần Hữu Duật2* 

1Trường Đại học Trần Đại Nghĩa, Thành phố Hồ Chí Minh, Việt Nam 
2Trường Đại học Thủ Dầu Một, Thành phố Hồ Chí Minh, Việt Nam 

*Tác giả liên hệ: duatth@tdmu.edu.vn 

THÔNG TIN BÀI BÁO TÓM TẮT 

Bài báo này trình bày một phương pháp mới để mô phỏng các hiện tượng vật lý cổ 

điển – cụ thể là truyền nhiệt và khuếch tán khối lượng – bằng cách sử dụng Mạng 

Nơ-ron Tích hợp Thông tin Vật lý (Physics-Informed Neural Networks – PINNs), 

một loại mạng nơ-ron sâu có khả năng kết hợp các ràng buộc vật lý. Khác với các 

mô hình học máy thông thường, PINNs cho phép tích hợp dữ liệu thực nghiệm với 

các phương trình vi phân riêng phần (PDEs) chi phối các hệ thống vật lý cơ bản. 

Nhờ đó, mô hình có thể đưa ra dự đoán chính xác ngay cả khi dữ liệu đầu vào 

không đầy đủ hoặc bị nhiễu. Trong nghiên cứu này, các mô hình PINN được xây 

dựng và huấn luyện cho hai bài toán kinh điển: truyền nhiệt trong thanh 1 chiều 

(1D) và khuếch tán nồng độ trong môi trường kín. Kết quả mô phỏng cho thấy 

PINNs đạt sai số dự đoán thấp hơn đáng kể so với các mạng nơ-ron tiêu chuẩn 

không áp dụng ràng buộc vật lý, đồng thời thể hiện khả năng khái quát hóa mạnh 

mẽ và tính ổn định số cao. Phương pháp này mở ra một hướng tiếp cận đầy hứa 

hẹn cho việc mô phỏng các quá trình vật lý, đặc biệt trong những trường hợp dữ 

liệu thực tế hạn chế – rất phù hợp cho các ứng dụng trong giáo dục, kỹ thuật và 

nghiên cứu khoa học. 
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Received:  Jun 22nd, 2025 This paper presents a novel approach to simulating classical physical phenomena-

specifically heat transfer and mass diffusion-using Physics-Informed Neural 

Networks (PINNs), a class of deep neural networks that incorporate physical 

constraints. Unlike conventional machine learning models, PINNs allow the 

integration of empirical data with partial differential equations (PDEs) governing 

the underlying physical systems. This results in models capable of making accurate 

predictions even in the presence of incomplete or noisy data. The study constructs 

and trains PINN models for two canonical problems: heat conduction in a one-

dimensional (1D) rod and concentration diffusion in a closed medium. Simulation 

results demonstrate that the PINNs achieve significantly lower prediction errors 

compared to standard neural networks without physical constraints, while also 

exhibiting strong generalization capabilities and numerical stability. This method 

offers a promising new direction for simulating physical processes, particularly in 

scenarios where real-world data are limited-making it well-suited for applications in 

education, engineering, and scientific research.  
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1. INTRODUCTION 

Heat transfer and mass diffusion are two fundamental 

physical phenomena that play critical roles in various 

fields such as thermal engineering, environmental science, 

biomedical applications, and materials processing [1–3]. 

Accurate simulation of these processes not only enhances 

our understanding of the underlying physical mechanisms 

but also aids in optimizing the design and operation of 

real-world systems. For decades, traditional numerical 

methods such as the finite difference method (FDM), 

finite element method (FEM), and finite volume method 

(FVM) have been widely employed to solve partial 

differential equations (PDEs) governing heat and mass 

transport [4–6]. However, these methods often require fine 

computational meshes, involve high computational costs, 

and lack flexibility when dealing with incomplete data, 

complex geometries, or unknown boundary conditions [7]. 

In recent years, the rapid development of machine 

learning and artificial intelligence-particularly deep neural 

networks (DNNs)-has led to increasing efforts to apply 

data-driven models in physical simulations [8–10]. 

Nevertheless, most conventional machine learning 

approaches rely heavily on empirical data and fail to 

enforce the fundamental laws of physics. As a result, such 

models are prone to overfitting and may produce 

physically unrealistic predictions. In addition to standard 

deep neural networks, other machine learning models 

have also been explored for physical simulations. 

Gaussian Processes (GPs), for instance, are commonly 

used for surrogate modeling and uncertainty quantification 

in physics-based systems, particularly when data are 

scarce [38]. Graph Neural Networks (GNNs), on the other 

hand, are designed to capture relationships in structured 

data and have been applied to simulate physical systems 

with spatial connectivity, such as solid-state materials, 

fluid flows, and multi-body dynamics [39]. 

To overcome these limitations, Raissi et al. introduced 

the Physics-Informed Neural Network (PINN) framework 

[11], in which the governing PDEs are directly embedded 

into the loss function of the neural network. This approach 

enables the integration of observational data with 

fundamental physical knowledge, significantly improving 

the model’s generalization and numerical stability. PINNs 

have since been successfully applied in various domains, 

including fluid mechanics [12], elasticity [13], 

electromagnetism [14], and more recently, heat transfer 

[15–17]. Recent developments have also extended the 

PINN framework to inverse problems and domain 

decomposition, as demonstrated in studies such as [40] 

and [41]. However, in Vietnam, research in this area 

remains limited. While PINNs have been applied 

internationally to various problems, many of those studies 

focus on complex physics, inverse problems, or assume 

access to dense and noise-free datasets. In contrast, this 

study uses intentionally sparse and noisy data to evaluate 

how well PINNs can generalize under realistic constraints. 

Furthermore, we directly compare the PINN’s 

performance with a standard DNN trained on the same 

limited dataset, highlighting the role of embedded physics 

in learning. Moreover, while many existing PINN studies 

have emphasized inverse problems or high-dimensional 

multiphysics models under ideal conditions, our work 

provides a systematic baseline for evaluating PINNs in 

fundamental transport phenomena under practical data 

limitations, an area that remains underexplored, 

particularly in the Vietnamese context. Most recent 

studies have focused on conventional machine learning 

models for data prediction [18] or have applied numerical 

methods in combination with commercial software such as 

COMSOL [19,20], without incorporating physics directly 

into the learning process. In response to this gap, this 

paper proposes the application of PINNs to simulate two 

representative physical problems: one-dimensional heat 

conduction and concentration diffusion in a closed 

domain. By developing a physics-informed deep learning 

model, this study aims to evaluate the accuracy and 

robustness of PINNs compared to traditional neural 

networks, while providing a foundation for further 

research in computational physics, education, and 

engineering. 

2. THEORY 

2.1 Heat Transfer and Diffusion Equations 

 In classical physics, heat transfer in a homogeneous 

material is typically described by the heat equation. In 

one-dimensional form, the equation is given by: 
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where u(x, t) is the temperature at position x and time t, 

and α is the thermal diffusivity. 

The thermal diffusivity is defined as 
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 = , where k is 

the thermal conductivity (W.m-1.K-1), ρ is the material 

density (kg.m-3), and cp the specific heat capacity at 

constant pressure (J.kg-1.K-1) [21]. 

 Similarly, the diffusion of mass in an isotropic 

medium follows Fick’s second law of diffusion: 
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Where C(x, t) denotes the concentration of the 

diffusing substance at position x and time t, and D is the 

diffusion coefficient (m2.s-1) [22]. 

These equations are typically accompanied by initial 

conditions and boundary conditions to ensure the well-

posedness and stability of the solution [23,24]. 

2.2 Physics-Informed Neural Networks (PINN) 

 The Physics-Informed Neural Network (PINN) is a 

framework that integrates deep learning with fundamental 

physical knowledge, specifically in the form of partial 

differential equations (PDE). The core idea is to train a 

neural network (where θ denotes the set of 

trainable parameters) such that its output simultaneously 

satisfies the following: 

 - Consistency with measured data (data loss), 

 - Compliance with governing physical equations 

(physics loss), 
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 - Satisfaction of boundary and initial conditions 

(boundary/initial loss). 

2.3 General Loss Function of PINN 

The total loss function in a PINN is typically 

expressed as: 
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is the residual loss measuring violation of the governing 

heat equation; 

Lbc/ic denotes the loss associated with boundary and initial 

conditions; and λ1, λ2, λ3 are adjustable weighting 

coefficients depending on the problem. 

All derivatives appearing in the loss function are 

computed via automatic differentiation, a key advantage 

of modern deep learning libraries such as TensorFlow and 

PyTorch [25,26]. 

Unlike traditional numerical methods such as FDM or 

FEM, PINN do not require discretizing the spatial-

temporal domain into meshes. Instead, the model is 

trained on a set of randomly sampled points within the 

problem domain, allowing it to handle complex 

geometries and sparse data more effectively [27]. 

2.4 Advantages of PINN over Traditional Methods 

Criteria 
Traditional 

FDM/FEM 
PINN 

Mesh requirement Required Not required 

Geometric flexibility Low High 

Use of experimental data Not applicable 
Can be 

integrated 

Generalization 

capability 
Poor Good 

Performance with 

limited data 
Difficult Effective 

Compared to purely data-driven neural networks 

(DNN) without physical constraints, PINN exhibit 

superior stability and accuracy, especially in inverse 

problems or simulations under data-scarce conditions [28–

30]. 

 

3. NUMERICAL RESULTS 

3.1 Benchmark Problems for Validation 

In this study, two classical benchmark problems are 

employed to validate the proposed PINN model: 

- One-dimensional heat conduction in a rod of length 

L = 1 m, with an initial linear temperature distribution and 

fixed temperatures at both ends. The governing equation 

is: 
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- One-dimensional mass diffusion in a closed tube, 

with an initial concentration peak at the center and zero-

flux (Neumann) boundary conditions. The governing 

equation is: 
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Both problems are defined over the domain 

]1,0[]1,0[),( tx , with appropriately chosen boundary 

and initial conditions to ensure the existence of analytical 

solutions for comparison. 

3.2 PINN Architecture and Training Strategy 

Model details and data handling: The PINN model 

used in this study consists of 4 fully connected hidden 

layers, each containing 50 neurons, with the hyperbolic 

tangent (tanh) activation function to ensure smooth 

approximations. For the heat conduction problem, fixed 

Dirichlet boundary conditions were applied at both ends 

of the rod. In the diffusion case, Neumann boundary 

conditions with zero flux were enforced to simulate a 

closed tube. The training data was deliberately sparse—

only 20% of spatial nodes were randomly sampled, and a 

small number of time steps were selected. In the noisy-

data scenario, we added white Gaussian noise with σ = 

0.05 to the observations, and no other noise types were 

introduced. These design choices reflect realistic 

conditions found in experimental and educational 

environments, especially where data are incomplete or 

imprecise. 

Neural network architecture: The PINN is 

composed of 4 hidden layers, each with 50 neurons, using 

the hyperbolic tangent (tanh) activation function to ensure 

smoothness. 

Input: spatial-temporal coordinates (x, t) . 

Output: predicted temperature u(x, t)  or oncentration 

C(x, t) . 

The network is implemented using the PyTorch 

framework, leveraging automatic differentiation to 

compute the required partial derivatives for the PDE 

residuals. 

Training strategy: A deliberately sparse dataset is 

used for training, consisting of temperature (or 

concentration) values at only 20% of the spatial points and 

a few discrete time steps. The goal is to test the network's 

ability to infer the full solution from limited data by 



Truong Van Tuan, Khau Van Bich, Tran Huu Duat 

 

67 JSLHU, Issue 22, September 2025 

 

enforcing physical laws. The spatial points were randomly 

selected from the grid, and only a small number of time 

steps were included to reflect realistic measurement 

limitations. In the noisy case, we added only white 

Gaussian noise (σ = 0.05) and did not introduce any 

additional noise types to preserve experimental control. 

This setup is intended to reflect real-world data constraints 

often encountered in educational and laboratory 

environments. 

A comparative baseline is also established using a 

standard DNN trained purely on the available data without 

incorporating the PDE. Both networks share the same 

architecture to ensure fairness in comparison. 

The composite loss function includes three 

components: 

- Data loss Ldata 

- Physics loss Lphysics  

- Boundary/initial condition loss Lbc/ic with manually 

tuned weights: λ1 = 1.0;  λ2 = 10.0; λ3 = 1.0 

Training details: 

- Optimizer: Adam 

- Number of epochs: 20,000 

- Learning rate: 0.001 

Each component of the loss function is monitored 

separately during training to assess the contribution of 

each constraint and guide appropriate weight adjustment 

[31–34]. 

3.3 Simulation and Result Comparison 

The analytical solutions for both problems are 

constructed using Python/SymPy and serve as the 

benchmark reference. Each model (PINN and standard 

DNN) is independently trained three times, and the final 

error metrics are reported as the average across these runs. 

Evaluation metrics include: 

- Mean Squared Error (MSE), 

- Maximum pointwise error (Max Error), 

- Accuracy in recovering physical gradients ∂u/∂x and 

∂2u/∂x2. 

Simulation results are visualized through temperature 

(or concentration) profiles over time, and cross-sectional 

plots comparing predicted and exact solutions at selected 

spatial-temporal slices. This study marks the first known 

application of PINN in Vietnam for solving physics 

problems with deliberately sparse data, in direct 

comparison to a purely data-driven DNN. Unlike previous 

studies that typically rely on dense datasets or commercial 

solvers (e.g., COMSOL), the present approach is purely 

based on deep learning and automatic differentiation, 

without using any external numerical solvers. The training 

setup with intentionally incomplete and discretely 

sampled data reflects a realistic scenario often 

encountered in educational or experimental contexts in 

Vietnam-where data may be limited, noisy, or incomplete. 

 

3.4 Numerical Results: Heat Conduction Problem 

Figures and tables in this section have been carefully 

revised to improve clarity and self-explanation. Each 

caption clearly states the compared models (PINN, 

standard DNN, analytical solution), and legends are 

standardized to enhance readability and highlight key 

differences. In this study, both the PINN and a standard 

DNN were trained on the same limited dataset, consisting 

of only 20% of spatial and temporal points. The goal was 

to simulate heat conduction in a one-dimensional rod and 

evaluate the models’ ability to reconstruct the temperature 

distribution throughout the domain. 

 

Figure 1. Comparison of temperature distribution at t = 0.5 

between the analytical solution, PINN, and standard DNN 

Figure 1 illustrates the temperature profiles at time t = 

0.5, comparing the predictions of the PINN and standard 

DNN with the analytical solution. The PINN model 

successfully recovers the overall shape of the temperature 

distribution across the domain, including regions with no 

training data. In contrast, the standard DNN shows 

significant deviation, especially near the boundaries, 

where it tends to underestimate or overshoot the actual 

values. To provide a quantitative comparison, Table 1 

presents the mean squared error (MSE) and maximum 

absolute error for both models. The PINN demonstrates 

significantly higher accuracy, with both metrics being 

notably lower than those of the standard DNN. 

Model 
Mean Squared Error 

(MSE) 

Maximum 

Error 

PINN 1.25 × 10⁻⁴ 0.013 

Standard 

DNN 
8.73 × 10⁻³ 0.094 

Table 1. Comparison of prediction errors between PINN and 

standard DNN 

These results confirm that the PINN, by embedding 

the governing physical laws into the learning process, is 

able to generalize better from limited data and provide 

more reliable predictions. The standard DNN, lacking 

such constraints, struggles particularly in regions where 

data is sparse, leading to less stable and physically 

inconsistent outputs. 

Figure 2 compares the second-order spatial derivative 

∂2u/∂x2 obtained from the analytical solution, the PINN 
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model, and the baseline DNN. The PINN trace (orange 

solid line) remains close to the analytical curve and 

exhibits only moderate, evenly distributed fluctuations. 

This indicates that the network not only matches the 

temperature field but also recovers the underlying 

curvature required by the heat equation, even in regions 

where no training data were provided. By contrast, the 

DNN prediction (red dashed line) oscillates wildly about 

the true curve, with large positive and negative spikes 

across the entire domain. These high-frequency artefacts 

reveal that a purely data-driven network cannot 

reconstruct higher-order gradients when data are sparse 

and physical constraints are absent. 

Observation PINN 
Standard 

DNN 

Agreement with 

analytical curvature 
Very good Poor 

Noise level in ∂2u/∂x2 
Low–moderate, 

evenly spread 

High, large 

spikes 

Physical consistency 
Satisfies PDE 

constraints 

Fails to respect 

PDE 

 

Figure 2. Second-order spatial derivative ∂²u/∂x² versus 

position x 

The PINN follows the analytical solution closely, 

whereas the DNN shows severe oscillations due to its lack 

of physical guidance. These results reinforce the earlier 

temperature-field comparison: embedding the governing 

physics enables the PINN to generalise beyond the limited 

training data and to reproduce not only the solution itself 

but also its spatial gradients, while the standard DNN 

remains unstable and physically inconsistent. These 

findings highlight the critical role of embedding physical 

constraints within the learning process. The PINN 

outperforms the standard DNN not only in accuracy but 

also in physical consistency and generalization under 

sparse-data conditions. This emphasizes the unique 

advantage of PINNs in capturing the underlying physics, 

particularly when data are noisy or incomplete. 

Similarly, for the diffusion problem, the PINN 

continues to demonstrate superior performance: 

- The model maintains high stability over time steps, 

accurately preserving the shape of the concentration 

distribution without introducing artificial oscillations or 

distortions. 

- When Gaussian noise is added to the training data (σ 

= 0.05), the PINN retains high predictive accuracy, 

achieving over 10 times lower mean squared error (MSE) 

compared to the standard DNN. 

 

Figure 3. Concentration diffusion with noisy data – PINN is 

more stable than standard DNN 

Figure 3 shows the concentration profile at a 

representative time step under noisy data conditions. The 

PINN prediction closely follows the ground truth (orange 

line), including in regions with limited or noisy data. In 

contrast, the standard DNN struggles to reconstruct the 

distribution shape, exhibiting noise amplification and 

notable deviation from the true solution. 

Model 
MSE  

(noisy data) 

Max 

Error 

PINN 2.04 × 10⁻⁴ 0.017 

Standard DNN 1.65 × 10⁻² 0.112 

Table 2. Error comparison under Gaussian noise in training 

data 

These results reinforce the robustness of the PINN 

approach. By embedding the governing PDEs into the 

learning process, the model is less sensitive to noise and 

better generalizes from imperfect data. This is particularly 

advantageous for real-world applications where 

measurement uncertainty is unavoidable. 

The results of both benchmark problems confirm that 

the Physics-Informed Neural Network not only matches or 

surpasses traditional data-driven models in accuracy, but 

also offers distinct advantages in physical consistency and 

robustness. Beyond numerical performance, several key 

attributes make PINN especially promising for real-world 

applications: 

Generalization. The PINN accurately predicts the 

solution even in regions with no training data, 

demonstrating that the network captures the governing 

physics rather than merely interpolating observed data. 

Stability. Across multiple training runs (three per 

problem), the PINN consistently yields low-variance 

results, while standard DNNs exhibit unstable behavior 

with significant error fluctuations. 
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Portability. The mesh-free nature of PINN enables 

flexible adaptation to more complex geometries and 

boundary conditions without significant reconfiguration. 

Practical value. In the context of higher education and 

applied research in Vietnam—where high-quality data is 

often limited—the PINN framework can be deployed to: 

simulate heat or mass transport in simplified experimental 

models, serve as a capstone or term project in engineering 

or environmental physics programs, support semi-

automated sensor networks where data are sparse or 

partially missing. 

Limitations and future directions. Despite its 

strengths, PINN training is still computationally intensive 

(~20–30 minutes per problem) due to the cost of 

automatic differentiation for PDE residuals. Moreover, 

scaling to 2D/3D problems remains a challenge without 

hardware acceleration or architectural improvements. 

Future research should explore enhanced variants such as 

fPINN, XPINN, and VPINN [35–37], which aim to 

accelerate convergence and improve prediction fidelity. 

4. CONCLUSION 

In this study, we developed a Physics-Informed Neural 

Network (PINN) to solve two classical problems in 

applied physics: one-dimensional heat conduction and 

mass diffusion. The model successfully reconstructed the 

solutions of partial differential equations (PDEs) under 

intentionally sparse and noisy data conditions—scenarios 

common in educational and experimental settings in 

Vietnam. Compared to a conventional deep neural 

network (DNN), the PINN demonstrated clear advantages 

in: 

 - Accurate predictions even in regions lacking 

training data; 

 - Reliable recovery of physical gradients; 

 - Superior stability and generalization in data-

scarce regimes. 

A key novelty of this work lies in the use of sparse 

training data to prioritize learning from governing physics 

rather than data fitting. The framework relies solely on 

deep learning and automatic differentiation, without 

external PDE solvers, aligning with modern trends in 

computational physics education and research. Beyond 

theoretical significance, the PINN also offers practical 

potential in: 

 - Predicting heat and concentration profiles in 

physical systems; 

 - Solving inverse problems to identify unknown 

parameters; 

 - Serving as an educational tool in university-

level physics courses. 

In terms of computational cost, each simulation in this 

study (including training and evaluation) took 

approximately 20–30 minutes on a personal computer 

using an Intel Core i7 CPU and 16 GB of RAM. While 

this is slower than conventional methods like FDM or 

FEM for simple 1D problems, PINNs do not require mesh 

generation and can generalize the solution across the 

domain once trained. This trade-off becomes 

advantageous in scenarios involving inverse problems, 

optimization, or cases where fine mesh construction is 

impractical. Future work will explore the extension to two 

and three-dimensional problems, coupled multiphysics 

systems, and advanced PINN variants such as XPINN, 

VPINN, and fPINN to improve convergence and 

scalability. 

XPINN (Extended PINN) divides the problem domain 

into smaller subdomains and trains the network in parallel 

to improve convergence speed. VPINN (Variational 

PINN) formulates the loss function using weak forms of 

the governing equations, leading to better accuracy in 

complex or high-dimensional problems. fPINN 

(Fractional PINN) extends the framework to solve 

fractional-order PDEs, which arise in systems with 

anomalous diffusion or memory effects. Additionally, 

integrating PINNs into interactive teaching platforms 

could enhance physics education and promote deeper 

understanding through simulation-based learning. 
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