= JOURNAL OF SCIENCE

OF LAC HONG UNIVERSITY

JSLHU

. ISSN: 2525 - 2186
Tap chi Khoa hoc Lac Hong, 2025, 22, 007-012

NGHIEN CUU KHA THI VA HIEU NANG LLM TREN THIET BI DI
PONG CHO HO TRQ HQC LAP TRINH C++

Ha Hoang Phiic!, Nguyén Tam Manh', Truong Hoang Man!, Pham Hoang Phuong', V6 Thi Anh Nhi',

Nguyén Lé Van Thanh?*, Cao Thai Phuong Thanh'

"Trieong Pai hoc Sai Gon, Thanh phé Ho Chi Minh, Viét Nam

2Truong Pai hoc Su Pham Ky Thudt, Thanh phé H6 Chi Minh, Viét Nam
* Tac gia lién hé: thanhnlv@hcmute.edu.vn

THONG TIN BAI BAO

Ngay nhan: 07/5/2025
Ngay hoan thién: 11/7/2025
Ngay chdp nhan:  12/7/2025
Ngay dang: 15/9/2025

TU KHOA

Lap trinh C++;

Thiét bi di dong;

Luong tir hoa;

Hoc 1ap trinh ngoai myén;
DeepSeck.

TOM TAT

Hoc lap trinh C++ 1a mot qué trinh phirc tap, doi hoi ngudi hoc nim viing ca ¢t
phap 1an tu duy thuat toan. Nghién ctru ndy nham dénh gia kha nang trién khai mo
hinh ngén ngit 16n (LLM) trén thiét bi di dong dé hd trg qua trinh hoc 1ap trinh
C++ hiéu qua hon. Cac mé hinh duoc thir nghiém gdm DeepSeek-Coder, Llama va
Gemma, véi cac k¥ thuat téi wu nhu luong tir hoa (quantization) 4-bit va 8-bit
nham giam muc ti€u thy tai nguyén. Thi nghiém dugc thuc hién dé do d6 chinh
xac khi giai bai tap C++, muc st dung b nhé (VRAM, RAM) va toc do suy luan
& cac muc t6i wu khac nhau. Két qua cho thiy DeepSeek-Coder-1.3B giai diing
khoang 40% bai, tiéu tén 3.2GB VRAM — phu hop cho dién thoai. Trong khi do,
DeepSeek-V2-Lite-Instruct (4-bit) dat d6 chinh xac 64% nhung yéu cdu 6GB
VRAM, thich hop hon véi laptop. Sau lwong tir héa, mé hinh c6 thé hoat dong on
dinh trén thiét bi nhu Samsung A52S (RAM 8GB), voi mic sit dung RAM hé
thong khoang 1.9GB — khong bao gdm phan ding cho hé diéu hanh. Két luan, viéc
trién khai LLM trén thiét bi di dong 14 hoan toan kha thi va ddy tiém ning trong
viéc hd tro hoc 1ap trinh. Nhém nghién ciru sé tiép tuc cai tién hiéu niang va giao
dién ngudi dung trong cac bude tiép theo.
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ABSTRACT

Learning C++ programming is a complex process that requires mastering both
syntax and algorithmic thinking. This study aims to evaluate the feasibility of
deploying large language models (LLMs) on mobile devices to support users in
learning C++ more effectively. The research involved testing models such as
DeepSeek-Coder, Llama, and Gemma, and applying optimization techniques like
4-bit and 8-bit quantization to reduce hardware resource consumption.
Experiments measured model accuracy on C++ tasks, memory usage (VRAM,
RAM), and inference speed under different optimization levels. Results showed
that DeepSeek-Coder-1.3B achieved the highest accuracy among mobile-friendly
models, solving around 40% of C++ problems with 3.2GB of VRAM—suitable for
smartphones. Meanwhile, DeepSeek-V2-Lite-Instruct (4-bit) reached 64%
accuracy but consumed 6GB VRAM, making it more appropriate for laptops. After
quantization, the model ran stably on devices such as the Samsung A52S (8GB
RAM), requiring approximately 1.9GB of system RAM (excluding OS usage),
which ensures acceptable performance on mid-range mobile devices. The findings
confirm that deploying LLMs on mobile platforms is feasible and holds significant
potential in supporting programming education. In the future, the research team
will continue to optimize performance and improve the user interface to enhance
the overall learning experience.
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Feasibility and performance study of LLMS on mobile devices for supporting C++ programming learning

1. INTRODUCTION

In the rapidly advancing era of technology,
programming has become an indispensable skill for
information technology students. However, learning
programming — especially with the C++ language — is a
significant challenge for many students, particularly in the
initial stages of learning. The main difficulties stem from
the need to master syntax, algorithmic thinking, and the
ability to analyze and solvelearning. Theith the rapid
development of artificial intelligence, large language
models (LLM) have proven their potential to effectively
support the process of learning programming.Many recent
studies, such as Khan et al. (2023) and Finnie-Ansley et
al. (2022), indicate that models like Codex and ChatGPT
can generate syntactically correct code, assist in
debugging, and provide algorithm explanations, thereby
helping to improve learning outcomes for programming
students.

In addition, the trend of deploying LLMs on mobile
devices is also attracting significant interest in the
research community, with projects like LLaMA.cpp,
MLC-LLM, and GGML demonstrating the potential to
run compact models directly on mainstream hardware
(Jiang et al., 2023; Deng et al., 2024).However, these
studies mainly focus on model optimization techniques
and have not deeply evaluated the applicability in
education, especially in supporting programming learning
through offline LLMs.

Current platforms supporting programming learning,
such as W3Schools, Codecademy, or LeetCode, mainly
require continuous Internet connectivity and provide
limited targeted support for the C++ language. Moreover,
most current Al tools (such as ChatGPT, Copilot) require
a network connection and substantial hardware resources,
making them difficult for students with limited learning
conditions to access.

From there, the research gap is identified: there is
currently no solution that implements compact, offline
LLMs on mobile devices to support learning C++
programming, while also providing a comprehensive
evaluation of performance, accuracy, and practical
feasibility.

Therefore, the topic "Feasibility and Performance Study
of LLM on Mobile Devices for Supporting C++
Programming Learning" was born with the aim of
realizing the deployment of LLM models directly on
smartphones, enabling students to learn programming
anytime, anywhere.The project focuses on open-source
models, small in size, optimized to run offline.Through
this, the research team aims to achieve goals such as:
Evaluating the performance and accuracy of LLM after
quantization when running on mobile devices;Compare
different models (DeepSeek, LLaMA, Gemma...) with
different quantization formats (4-bit, 8-bit); Analyze the
code generation capabilities and common errors of the
models; Propose a direction for developing an offline
LLM-integrated programming learning application for
students.

The novel contributions of the topic include: (1) A
comprehensive evaluation of LLM models quantized on
mobile devices for the C++ code generation task; (2)

Analysis of code generation errors, resource performance,
and execution time, thereby determining the feasibility of
application in resource-constrained learning
environments; (3) Suggesting the design of an offline Al-
supported learning system, opening a new direction for
personalized education without the need for network
connectivity.

2. CONTENT
2.1 Research methods
Dataset Preparation

The research uses the HumanEval-X (C++) dataset
from HuggingFace, which is used as the main benchmark
to evaluate large language models. This is a dataset
consisting of 164 diverse C++ programming problems,
covering basic programming concepts focused on
foundational knowledge such as basic syntax, conditional
structures, loops, functions, and arrays.

Some notable statistics from 100 random problems:
Atrrays: 61 problems (61.0%).
If Else: 90 problems (90.0%).
Loops: 90 problems (90.0%).

Some notable statistics from the total number of
problems:

Loops: 146 problems (90.1%).
If Else: 140 problems (86.4%).
Arrays: 99 problems (61.1%)

Each problem includes a problem description, function
declaration, and unit test set (input and output), but does
not contain a solution — suitable for evaluating the model’s
ability to generate code rather than for training.
HumanEval-X was chosen because of its high
representativeness to basic C++ programming skills and
its extensibility to check correctness through automated
testing.

Model Training and Optimization

In this study, the authors did not retrain or fine-tune the
large language models from scratch. Instead, the Gemma,
LLaMA, and DeepSeek models were selected from pre-
trained open-source models. This selection is based on
criteria such as small size (from 1 to under 30 billion
parameters), compatibility with the GGUF format,
popularity within the open-source community, and the
ability to deploy on common devices. These models are
all designed to generate source code for programming
tasks, especially for short and clearly structured tasks as
found in the HumanEval-X (C++) dataset.

After selecting the model, the team proceeded with the
optimization process through quantization to reduce
hardware resource requirements while still ensuring
reasonable processing performance. This process involves
converting the model's weights from high-precision
floating-point format (FP32) to lower-precision integer
formats such as INT8 or INT4, significantly reducing the
model size and processing speed. Two quantization
methods are applied, including:
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Symmetric Quantization: All weight values are scaled
to a value range symmetric around 0, suitable for balanced
weight distributions.

Asymmetric Quantization: Weights are scaled in a
skewed value domain, reducing information loss with
asymmetric skewed distributions.

To perform the quantization process and deploy the
model, the team uses the llama.cpp library — an open-
source framework that allows running LLM directly on
common CPUs and GPUs. Llama.cpp supports the GGUF
(GPT-Generated Unified Format) — helping to reduce
model size and optimize operation in resource-limited
environments, typically mobile devices.

The GGUF quantization methods used

The specific quantization formats used in the study
include: (1) Q4 K M: Applied to 4-bit models such as
DeepSeek-Coder-1.3B-it and LLaMA-3.2-3B-it-4bit; (2)
Q8 _0: Used for 8-bit models, such as LLaMA-3.2-3B-it-
8bit; (3) Q5 K M: Used in internal testing but not
selected for reporting because it is not as optimized as
Q4 _K M in mobile environments.

Especially, llama.cpp supports the K-Quant technique, a
modern quantization method that divides the model into
blocks and super-blocks, allowing for precise layer-wise
quantization. K-Quant uses a selective strategy and weight
rounding based on the scale factor to optimize the balance
between model size and inference accuracy.

After optimization, the models are deployed in a testing
environment and evaluated using the HumanEval-X (C++)
dataset, with 100 randomly selected problems. Each
problem is input into the model as a prompt, and the
generated code is tested using a predefined unit test set to
determine the metrics: accuracy, inference time, and
resource consumption (RAM/VRAM). The evaluation
process helps determine the model's performance on both
personal computers and mobile devices, thereby assessing
its feasibility for real-world deployment.

2.2 Results and Evaluation

Based on the implementation techniques in the previous
section, the study evaluates the performance of multiple
LLM models with scales from 1 to 27 billion parameters,
to determine the feasibility of deployment on general-
purpose hardware. The experiments are performed in a
standardized environment with Docker, using Linux
operating system, C++17 compiler, Python 11 and CUDA
12.5. The hardware configuration includes Intel Core i5-
12400F CPU, 32GB RAM and Nvidia RTX 4070 Super
12GB GPU for desktop; and Samsung AS52S phone
(Snapdragon 778G 5G, 8GB RAM) running Android 14
for mobile testing.

The test dataset includes 100 C++ problems randomly
selected from the HumanEval-X set with fixed seeds,
ensuring objectivity. For each problem, the model is asked
to generate code from the prompt, and the results are
checked through predefined unit test scripts.

Evaluation of models under 8 billion parameters

The evaluated models include Gemma-3-1B-it, Llama-
3.2-3B-it, DeepSeek-Coder-1.3B-it and their quantized
versions (4-bit, 8-bit). For small models, the results are as
follows:

Performance Metrics for Different Models
- success
" Execution Failed
Compilation Failed

deepseek-coder-1.3b

llama-3.2-38-4bit
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Figure 1. State chart of the number of problems of models under
8 billion parameters

e  Regarding the number of successes: The DeepSeek-
Coder-1.3B-it  model  achieved  outstanding
performance with 40 out of 100 problems solved
correctly, while Gemma-3-1B-it only achieved 15
out of 100. The LLaMA 3.2-3B models have average
performance, ranging from 29 to 32 successful
problems. This can be explained by the fact that
DeepSeek-Coder-1.3B-it was specially trained for
programming tasks (code-specialized tuning), which
helps increase accuracy and the ability to generate
valid code higher than general language models like
Gemma or LLaMA.

e  Regarding the number of failures due to not passing
the unit test (Execution Failed): DeepSeek-Coder-
1.3B-it had the lowest number of failures (47 times),
showing a high ability to generate approximate code.
Meanwhile, Gemma-3-1B-it had the highest failure
rate (63 times). The LLaMA 3.2-3B models had
average performance, ranging from 58 to 61 failures.

e Regarding the number of failures due to code
compilation (Compilation Failed): DeepSeek-Coder-
1.3B-it also shows stability with only 13 code
compilation failures, compared to 22 code
compilation failures in Gemma-3-1B-it. The LLaMA
3.2-3B models have average performance, ranging
from 8 to 10 failures.
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Figure 2. Capacity chart of models under 8 billion parameters

e  Regarding resource usage: Llama-3.2-3B-it-4bit uses
the least VRAM (2.5GB), while the non-quantized
version of Llama-3.2-3B exceeds the common 6GB
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VRAM limit on mid-range laptops (6.5GB).
Although it uses less VRAM, models like Llama-3.2-
3B-it-4bit do not achieve the same high performance
as DeepSeek, indicating that quantization needs to be
combined with good pretraining to maintain
accuracy. Additionally, the Deepseek-Coder-1.3b
model can occupy 50% of the user's computer's
VRAM capacity. (3.2GB). The Gemma-3-1b-it
model has the second lowest VRAM usage, only
after the Llama-3.2-3B-bit-4bit.
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Figure 3. Execution time graph of models under 8 billion
parameters.

e  Regarding inference speed: Quantization
significantly reduces execution time. Llama-3.2-3B-
it-4bit has the fastest processing speed. The
DeepSeek-Coder-1.3B-it model has 37.93% higher
accuracy than Llama-3.2-3B-4bit but only takes
12.8% more inference time.

Evaluating models over 8 billion parameters

The models in this group include Llama-3-8B-it, Gemma-
3-12B-it, DeepSeek-Coder-V2-Lite-Instruct and Gemma-
3-27B-it. To ensure the ability to deploy on common
hardware, the models are quantized down to 4-bit or 8-bit.
The results show:

Performance Metrics for Different Models
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Figure 4. State diagram of the number of problems for models
with 8 billion parameters or more

e  Accuracy: DeepSeek-Coder-V2-Lite-Instruct-4bit
achieved the highest performance with an accuracy
rate of up to 64%, surpassing Llama-3-8B-it-4bit by
73%. The superiority of DeepSeek-Coder-V2-Lite-
Instruct is largely due to the distillation technique
from larger models like CodeLlama-34B, which
helps the model retain important knowledge while
reducing the number of parameters. Compared to
recent reports on the Open LLM Leaderboard, this
model performs at least as well as or better than

StarCoder-15B on some programming tasks, despite
being significantly smaller in size.
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Figure 5. Capacity diagram of models with 8 billion parameters
or more.

e  Storage capacity and architecture: Thanks to the
GGUF format, the model can be split: part runs on
the GPU, the rest on the RAM. Choosing 11 layers to
load onto the GPU based on the 6GB VRAM limit
shows a balance between speed and memory, but this
number has not yet proven to be globally optimal.
Experiments with different numbers of layers (e.g.,
8, 13, 15) could help determine the optimal
performance threshold.
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Figure 6. Execution time chart of models with 8 billion
parameters or more

e Inference speed: The combination of GPU and CPU
computation increases inference time due to task
switching latency. However, DeepSeek-Coder-V2-
Lite-Instruct-4bit  still  maintains  reasonable
processing speed and high accuracy, demonstrating
the potential of the hybrid architecture (CPU + GPU)
in  non-specialized  environments.  However,
DeepSeek-Coder-V2-Lite-4bit still maintains a good
speed, completing about 60% of the total number of
problems.

General summary:

The Deepseek-Coder-1.3b-it model will be the most
suitable model to be able to run directly on mobile phones
while still maintaining high accuracy.

The Deepseek-Coder-V2-Lite-Instruct-4bit model will be
the suitable model to run on computers of ordinary users.

2.3 Limitations and development directions

Limitations:
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The current study still has some notable limitations in
both technical and methodological aspects.

First, the errors from the collected logs indicate two
main groups of errors:

1. Compilation Failed: Accounts for a significant
proportion, including common errors such as:

e  Missing #include standard library (<stack>,
<vector>, <string>, etc.)

e  Not using std:: or missing using namespace std;
e  Scope error (using undeclared variables)
e  Syntax error (;, {}, ()) and data type error.

2. Execution Failed: Includes errors such as:

e  Assertion Failed: The code runs but returns
incorrect results compared to the test case.
Algorithmic logic errors are the majority (e.g.,
false conditions, incomplete string processing,
off-by-one...)

. Runtime Timeout: Some cases have no obvious
errors but exceed the processing time limit.

Secondly, the research still has limitations in
experimental design: (1) Small sample size: Only 100
problems from the HumanEval-X dataset were used,
which is not enough to comprehensively represent C++
programming skills in practice; (2) The scope of model
evaluation is still limited: The study only uses accuracy as
the main criterion; there are no other supplementary
indicators such as code comprehensibility, complexity, or
pedagogical quality. (3) Limited testing devices: Only
evaluated on one phone model (Samsung A52S) and one
computer configuration (RTX 4070), so it does not fully
reflect the model's deployment capabilities on other
popular devices; (4) Lack of real user verification: The
research has not conducted surveys of learners or analyzed
the real experiences of end users; (5) Not compared with
SOTA models: The results have not been placed in a
broader context to compare with other modern models that
may achieve higher accuracy or better optimization
capabilities.

Development direction:

Based on the experimental results and the identified
limitations, this study proposes several development
directions to further enhance and expand the application in
the future. Firstly, the research aims to develop a complete
C++ programming learning application that is user-
friendly and capable of running offline on devices with
standard configurations. This application will integrate
optimized LLMs and support features such as code
generation, error correction suggestions, line-by-line
explanations, automatic assessment, and practice
exercises.

In parallel, the study focuses on improving the accuracy
of code generation through fine-tuning on specialized
datasets for the C++ language, as well as analyzing and
addressing common errors such as compilation errors,
logic errors, and runtime failures. Optimizing the
quantization algorithms is also a key direction, involving

the exploration and application of advanced techniques
like K-Quant, Group-wise Quantization, or Mixed
Precision to achieve a balance between processing
efficiency and resource consumption. These optimizations
will allow the models to perform better on mobile devices
or low-end computers.

Additionally, the study aims to expand support to other
popular programming languages such as Python, Java, or
JavaScript, in order to serve a broader range of learners.
Personalizing the learning process is also a key focus,
with the development of a system to track user progress
and analyze errors to provide tailored learning suggestions
based on individual skill levels and learning needs.
Finally, the study aims to enhance the natural interaction
and communication capabilities between the learner and
the model, allowing the model to act as a virtual tutor that
can flexibly respond to questions. This interactive
approach supports learners in developing a proactive and
effective problem-solving mindset.

3. CONCLUSION

In the context of the increasing demand for
programming learning and the strong development of
artificial intelligence-based support tools, the topic
"Feasibility and Performance Study of LLM on Mobile
Devices for Supporting C++ Programming Learning" has
demonstrated the feasibility of deploying large language
models directly on mobile devices. Through practical
experiments with the DeepSeek-Coder-1.3B model, the
study shows that the model can operate stably, achieve
significant accuracy and consume resources at a suitable
level, thereby affirming the application potential of LLM
in supporting offline programming learning.

Due to time and resource constraints, the study has not
yet conducted statistical significance testing. This is an
important direction that needs to be implemented in future
studies to determine the reliability of the differences in
results between the models. In addition, the study
analyzed the effectiveness of the quantization technique in
reducing the model size and increasing the processing
speed. However, this process also leads to some
limitations in accuracy. Tracking the compilation errors
and execution errors generated by the model has provided
practical insights into the Al's C++ code generation
capabilities and also serves as a basis for proposing
improvements to enhance the quality of learning support.

In the future, the research team aims to develop a
dedicated application with a friendly interface, integrating
step-by-step learning instructions, practice exercises, and
progress tracking tools. Further research will focus on
improving the accuracy of the generated code, optimizing
the quantization technique to suit low-configuration
devices, as well as expanding to other programming
languages such as Python or Java. The results achieved
from the project not only affirm the potential of LLM in
programming education but also open up development
directions for smart learning tools, contributing to
improving the quality of information technology training
in the future.
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