
JSLHU

JOURNAL OF SCIENCE
OF LAC HONG UNIVERSITY

ISSN: 2525 - 2186

Tạp chí Khoa học Lạc Hồng, 2025, 22, 007-012

7 JSLHU, Issue 22, September 2025

NGHIÊN CỨU KHẢ THI VÀ HIỆU NĂNG LLM TRÊN THIẾT BỊ DI

ĐỘNG CHO HỖ TRỢ HỌC LẬP TRÌNH C++

Hà Hoàng Phúc1, Nguyễn Tam Mạnh1, Trương Hoàng Mẫn1, Phạm Hoàng Phương1, Võ Thị Ánh Nhi1,

Nguyễn Lê Vân Thanh2*, Cao Thái Phương Thanh1
1Trường Đại học Sài Gòn, Thành phố Hồ Chí Minh, Việt Nam

2Trường Đại học Sư Phạm Kỹ Thuật, Thành phố Hồ Chí Minh, Việt Nam

* Tác giả liên hệ: thanhnlv@hcmute.edu.vn

THÔNG TIN BÀI BÁO TÓM TẮT

Học lập trình C++ là một quá trình phức tạp, đòi hỏi người học nắm vững cả cú

pháp lẫn tư duy thuật toán. Nghiên cứu này nhằm đánh giá khả năng triển khai mô

hình ngôn ngữ lớn (LLM) trên thiết bị di động để hỗ trợ quá trình học lập trình

C++ hiệu quả hơn. Các mô hình được thử nghiệm gồm DeepSeek-Coder, Llama và

Gemma, với các kỹ thuật tối ưu như lượng tử hóa (quantization) 4-bit và 8-bit

nhằm giảm mức tiêu thụ tài nguyên. Thí nghiệm được thực hiện để đo độ chính

xác khi giải bài tập C++, mức sử dụng bộ nhớ (VRAM, RAM) và tốc độ suy luận

ở các mức tối ưu khác nhau. Kết quả cho thấy DeepSeek-Coder-1.3B giải đúng

khoảng 40% bài, tiêu tốn 3.2GB VRAM – phù hợp cho điện thoại. Trong khi đó,

DeepSeek-V2-Lite-Instruct (4-bit) đạt độ chính xác 64% nhưng yêu cầu 6GB

VRAM, thích hợp hơn với laptop. Sau lượng tử hóa, mô hình có thể hoạt động ổn

định trên thiết bị như Samsung A52S (RAM 8GB), với mức sử dụng RAM hệ

thống khoảng 1.9GB – không bao gồm phần dùng cho hệ điều hành. Kết luận, việc

triển khai LLM trên thiết bị di động là hoàn toàn khả thi và đầy tiềm năng trong

việc hỗ trợ học lập trình. Nhóm nghiên cứu sẽ tiếp tục cải tiến hiệu năng và giao

diện người dùng trong các bước tiếp theo.

Ngày nhận: 07/5/2025

Ngày hoàn thiện: 11/7/2025

Ngày chấp nhận: 12/7/2025

Ngày đăng: 15/9/2025

TỪ KHÓA

Lập trình C++;

Thiết bị di động;

Lượng tử hóa;

Học lập trình ngoại tuyến;

DeepSeek.

FEASIBILITY AND PERFORMANCE STUDY OF LLMS ON MOBILE

DEVICES FOR SUPPORTING C++ PROGRAMMING LEARNING

Ha Hoang Phuc1, Nguyen Tam Manh1, Truong Hoang Man1, Pham Hoang Phuong1, Vo Thi Anh Nhi1,

Nguyen Le Van Thanh2*, Cao Thai Phuong Thanh1
1Saigon University, Ho Chi Minh City, Vietnam

2HCMC University of Technology and Education, Ho Chi Minh City, Vietnam

*Corresponding Author: thanhnlv@hcmute.edu.vn

THÔNG TIN BÀI BÁO ABSTRACT

Learning C++ programming is a complex process that requires mastering both

syntax and algorithmic thinking. This study aims to evaluate the feasibility of

deploying large language models (LLMs) on mobile devices to support users in

learning C++ more effectively. The research involved testing models such as

DeepSeek-Coder, Llama, and Gemma, and applying optimization techniques like

4-bit and 8-bit quantization to reduce hardware resource consumption.

Experiments measured model accuracy on C++ tasks, memory usage (VRAM,

RAM), and inference speed under different optimization levels. Results showed

that DeepSeek-Coder-1.3B achieved the highest accuracy among mobile-friendly

models, solving around 40% of C++ problems with 3.2GB of VRAM—suitable for

smartphones. Meanwhile, DeepSeek-V2-Lite-Instruct (4-bit) reached 64%

accuracy but consumed 6GB VRAM, making it more appropriate for laptops. After

quantization, the model ran stably on devices such as the Samsung A52S (8GB

RAM), requiring approximately 1.9GB of system RAM (excluding OS usage),

which ensures acceptable performance on mid-range mobile devices. The findings

confirm that deploying LLMs on mobile platforms is feasible and holds significant

potential in supporting programming education. In the future, the research team

will continue to optimize performance and improve the user interface to enhance

the overall learning experience.

Received: May 7th, 2025

Revised: Jul 11st, 2025

Accepted: Jul 12nd, 2025

Published: Sep 15th, 2025

KEYWORDS

Programming in C++;

Mobile devices;

Quantization;

Learn offline programming;

DeepSeek.

Doi: https://doi.org/10.61591/jslhu.22.789

Available online at: https://js.lhu.edu.vn/index.php/lachong

mailto:thanhnlv@hcmute.edu.vn
mailto:thanhnlv@hcmute.edu.vn
https://doi.org/10.61591/jslhu.22.789
https://js.lhu.edu.vn/index.php/lachong

Feasibility and performance study of LLMS on mobile devices for supporting C++ programming learning

JSLHU, Issue 22, September 2025

8

1. INTRODUCTION

In the rapidly advancing era of technology,

programming has become an indispensable skill for

information technology students. However, learning

programming – especially with the C++ language – is a

significant challenge for many students, particularly in the

initial stages of learning. The main difficulties stem from

the need to master syntax, algorithmic thinking, and the

ability to analyze and solvelearning. Theith the rapid

development of artificial intelligence, large language

models (LLM) have proven their potential to effectively

support the process of learning programming.Many recent

studies, such as Khan et al. (2023) and Finnie-Ansley et

al. (2022), indicate that models like Codex and ChatGPT

can generate syntactically correct code, assist in

debugging, and provide algorithm explanations, thereby

helping to improve learning outcomes for programming

students.

In addition, the trend of deploying LLMs on mobile

devices is also attracting significant interest in the

research community, with projects like LLaMA.cpp,

MLC-LLM, and GGML demonstrating the potential to

run compact models directly on mainstream hardware

(Jiang et al., 2023; Deng et al., 2024).However, these

studies mainly focus on model optimization techniques

and have not deeply evaluated the applicability in

education, especially in supporting programming learning

through offline LLMs.

Current platforms supporting programming learning,

such as W3Schools, Codecademy, or LeetCode, mainly

require continuous Internet connectivity and provide

limited targeted support for the C++ language. Moreover,

most current AI tools (such as ChatGPT, Copilot) require

a network connection and substantial hardware resources,

making them difficult for students with limited learning

conditions to access.

From there, the research gap is identified: there is

currently no solution that implements compact, offline

LLMs on mobile devices to support learning C++

programming, while also providing a comprehensive

evaluation of performance, accuracy, and practical

feasibility.

Therefore, the topic "Feasibility and Performance Study

of LLM on Mobile Devices for Supporting C++

Programming Learning" was born with the aim of

realizing the deployment of LLM models directly on

smartphones, enabling students to learn programming

anytime, anywhere.The project focuses on open-source

models, small in size, optimized to run offline.Through

this, the research team aims to achieve goals such as:

Evaluating the performance and accuracy of LLM after

quantization when running on mobile devices;Compare

different models (DeepSeek, LLaMA, Gemma...) with

different quantization formats (4-bit, 8-bit); Analyze the

code generation capabilities and common errors of the

models; Propose a direction for developing an offline

LLM-integrated programming learning application for

students.

The novel contributions of the topic include: (1) A

comprehensive evaluation of LLM models quantized on

mobile devices for the C++ code generation task; (2)

Analysis of code generation errors, resource performance,

and execution time, thereby determining the feasibility of

application in resource-constrained learning

environments; (3) Suggesting the design of an offline AI-

supported learning system, opening a new direction for

personalized education without the need for network

connectivity.

2. CONTENT

2.1 Research methods

Dataset Preparation

The research uses the HumanEval-X (C++) dataset

from HuggingFace, which is used as the main benchmark

to evaluate large language models. This is a dataset

consisting of 164 diverse C++ programming problems,

covering basic programming concepts focused on

foundational knowledge such as basic syntax, conditional

structures, loops, functions, and arrays.

Some notable statistics from 100 random problems:

Arrays: 61 problems (61.0%).

If_Else: 90 problems (90.0%).

Loops: 90 problems (90.0%).

Some notable statistics from the total number of

problems:

Loops: 146 problems (90.1%).

If_Else: 140 problems (86.4%).

Arrays: 99 problems (61.1%)

Each problem includes a problem description, function

declaration, and unit test set (input and output), but does

not contain a solution – suitable for evaluating the model’s

ability to generate code rather than for training.

HumanEval-X was chosen because of its high

representativeness to basic C++ programming skills and

its extensibility to check correctness through automated

testing.

Model Training and Optimization

In this study, the authors did not retrain or fine-tune the

large language models from scratch. Instead, the Gemma,

LLaMA, and DeepSeek models were selected from pre-

trained open-source models. This selection is based on

criteria such as small size (from 1 to under 30 billion

parameters), compatibility with the GGUF format,

popularity within the open-source community, and the

ability to deploy on common devices. These models are

all designed to generate source code for programming

tasks, especially for short and clearly structured tasks as

found in the HumanEval-X (C++) dataset.

After selecting the model, the team proceeded with the

optimization process through quantization to reduce

hardware resource requirements while still ensuring

reasonable processing performance. This process involves

converting the model's weights from high-precision

floating-point format (FP32) to lower-precision integer

formats such as INT8 or INT4, significantly reducing the

model size and processing speed. Two quantization

methods are applied, including:

Ha Hoang Phuc, Nguyen Tam Manh, Truong Hoang Man Pham Hoang Phuong, Vo Thi Anh Nhi, Nguyen Le Van Thanh,

Cao Thai Phuong Thanh

9 JSLHU, Issue 22, September 2025

Symmetric Quantization: All weight values are scaled

to a value range symmetric around 0, suitable for balanced

weight distributions.

Asymmetric Quantization: Weights are scaled in a

skewed value domain, reducing information loss with

asymmetric skewed distributions.

To perform the quantization process and deploy the

model, the team uses the llama.cpp library – an open-

source framework that allows running LLM directly on

common CPUs and GPUs. Llama.cpp supports the GGUF

(GPT-Generated Unified Format) – helping to reduce

model size and optimize operation in resource-limited

environments, typically mobile devices.

The GGUF quantization methods used

The specific quantization formats used in the study

include: (1) Q4_K_M: Applied to 4-bit models such as

DeepSeek-Coder-1.3B-it and LLaMA-3.2-3B-it-4bit; (2)

Q8_0: Used for 8-bit models, such as LLaMA-3.2-3B-it-

8bit; (3) Q5_K_M: Used in internal testing but not

selected for reporting because it is not as optimized as

Q4_K_M in mobile environments.

Especially, llama.cpp supports the K-Quant technique, a

modern quantization method that divides the model into

blocks and super-blocks, allowing for precise layer-wise

quantization. K-Quant uses a selective strategy and weight

rounding based on the scale factor to optimize the balance

between model size and inference accuracy.

After optimization, the models are deployed in a testing

environment and evaluated using the HumanEval-X (C++)

dataset, with 100 randomly selected problems. Each

problem is input into the model as a prompt, and the

generated code is tested using a predefined unit test set to

determine the metrics: accuracy, inference time, and

resource consumption (RAM/VRAM). The evaluation

process helps determine the model's performance on both

personal computers and mobile devices, thereby assessing

its feasibility for real-world deployment.

2.2 Results and Evaluation

Based on the implementation techniques in the previous

section, the study evaluates the performance of multiple

LLM models with scales from 1 to 27 billion parameters,

to determine the feasibility of deployment on general-

purpose hardware. The experiments are performed in a

standardized environment with Docker, using Linux

operating system, C++17 compiler, Python 11 and CUDA

12.5. The hardware configuration includes Intel Core i5-

12400F CPU, 32GB RAM and Nvidia RTX 4070 Super

12GB GPU for desktop; and Samsung A52S phone

(Snapdragon 778G 5G, 8GB RAM) running Android 14

for mobile testing.

The test dataset includes 100 C++ problems randomly

selected from the HumanEval-X set with fixed seeds,

ensuring objectivity. For each problem, the model is asked

to generate code from the prompt, and the results are

checked through predefined unit test scripts.

Evaluation of models under 8 billion parameters

The evaluated models include Gemma-3-1B-it, Llama-

3.2-3B-it, DeepSeek-Coder-1.3B-it and their quantized

versions (4-bit, 8-bit). For small models, the results are as

follows:

Figure 1. State chart of the number of problems of models under

8 billion parameters

⚫ Regarding the number of successes: The DeepSeek-

Coder-1.3B-it model achieved outstanding

performance with 40 out of 100 problems solved

correctly, while Gemma-3-1B-it only achieved 15

out of 100. The LLaMA 3.2-3B models have average

performance, ranging from 29 to 32 successful

problems. This can be explained by the fact that

DeepSeek-Coder-1.3B-it was specially trained for

programming tasks (code-specialized tuning), which

helps increase accuracy and the ability to generate

valid code higher than general language models like

Gemma or LLaMA.

⚫ Regarding the number of failures due to not passing

the unit test (Execution Failed): DeepSeek-Coder-

1.3B-it had the lowest number of failures (47 times),

showing a high ability to generate approximate code.

Meanwhile, Gemma-3-1B-it had the highest failure

rate (63 times). The LLaMA 3.2-3B models had

average performance, ranging from 58 to 61 failures.

⚫ Regarding the number of failures due to code

compilation (Compilation Failed): DeepSeek-Coder-

1.3B-it also shows stability with only 13 code

compilation failures, compared to 22 code

compilation failures in Gemma-3-1B-it. The LLaMA

3.2-3B models have average performance, ranging

from 8 to 10 failures.

Figure 2. Capacity chart of models under 8 billion parameters

⚫ Regarding resource usage: Llama-3.2-3B-it-4bit uses

the least VRAM (2.5GB), while the non-quantized

version of Llama-3.2-3B exceeds the common 6GB

Feasibility and performance study of LLMS on mobile devices for supporting C++ programming learning

JSLHU, Issue 22, September 2025

10

VRAM limit on mid-range laptops (6.5GB).

Although it uses less VRAM, models like Llama-3.2-

3B-it-4bit do not achieve the same high performance

as DeepSeek, indicating that quantization needs to be

combined with good pretraining to maintain

accuracy. Additionally, the Deepseek-Coder-1.3b

model can occupy 50% of the user's computer's

VRAM capacity. (3.2GB). The Gemma-3-1b-it

model has the second lowest VRAM usage, only

after the Llama-3.2-3B-bit-4bit.

Figure 3. Execution time graph of models under 8 billion

parameters.

⚫ Regarding inference speed: Quantization

significantly reduces execution time. Llama-3.2-3B-

it-4bit has the fastest processing speed. The

DeepSeek-Coder-1.3B-it model has 37.93% higher

accuracy than Llama-3.2-3B-4bit but only takes

12.8% more inference time.

Evaluating models over 8 billion parameters

The models in this group include Llama-3-8B-it, Gemma-

3-12B-it, DeepSeek-Coder-V2-Lite-Instruct and Gemma-

3-27B-it. To ensure the ability to deploy on common

hardware, the models are quantized down to 4-bit or 8-bit.

The results show:

Figure 4. State diagram of the number of problems for models

with 8 billion parameters or more

⚫ Accuracy: DeepSeek-Coder-V2-Lite-Instruct-4bit

achieved the highest performance with an accuracy

rate of up to 64%, surpassing Llama-3-8B-it-4bit by

73%. The superiority of DeepSeek-Coder-V2-Lite-

Instruct is largely due to the distillation technique

from larger models like CodeLlama-34B, which

helps the model retain important knowledge while

reducing the number of parameters. Compared to

recent reports on the Open LLM Leaderboard, this

model performs at least as well as or better than

StarCoder-15B on some programming tasks, despite

being significantly smaller in size.

Figure 5. Capacity diagram of models with 8 billion parameters

or more.

⚫ Storage capacity and architecture: Thanks to the

GGUF format, the model can be split: part runs on

the GPU, the rest on the RAM. Choosing 11 layers to

load onto the GPU based on the 6GB VRAM limit

shows a balance between speed and memory, but this

number has not yet proven to be globally optimal.

Experiments with different numbers of layers (e.g.,

8, 13, 15) could help determine the optimal

performance threshold.

Figure 6. Execution time chart of models with 8 billion

parameters or more

⚫ Inference speed: The combination of GPU and CPU

computation increases inference time due to task

switching latency. However, DeepSeek-Coder-V2-

Lite-Instruct-4bit still maintains reasonable

processing speed and high accuracy, demonstrating

the potential of the hybrid architecture (CPU + GPU)

in non-specialized environments. However,

DeepSeek-Coder-V2-Lite-4bit still maintains a good

speed, completing about 60% of the total number of

problems.

General summary:

The Deepseek-Coder-1.3b-it model will be the most

suitable model to be able to run directly on mobile phones

while still maintaining high accuracy.

The Deepseek-Coder-V2-Lite-Instruct-4bit model will be

the suitable model to run on computers of ordinary users.

2.3 Limitations and development directions

Limitations:

Ha Hoang Phuc, Nguyen Tam Manh, Truong Hoang Man Pham Hoang Phuong, Vo Thi Anh Nhi, Nguyen Le Van Thanh,

Cao Thai Phuong Thanh

11 JSLHU, Issue 22, September 2025

The current study still has some notable limitations in

both technical and methodological aspects.

First, the errors from the collected logs indicate two

main groups of errors:

1. Compilation Failed: Accounts for a significant

proportion, including common errors such as:

⚫ Missing #include standard library (<stack>,

<vector>, <string>, etc.)

⚫ Not using std:: or missing using namespace std;

⚫ Scope error (using undeclared variables)

⚫ Syntax error (;, {}, ()) and data type error.

2. Execution Failed: Includes errors such as:

⚫ Assertion Failed: The code runs but returns

incorrect results compared to the test case.

Algorithmic logic errors are the majority (e.g.,

false conditions, incomplete string processing,

off-by-one…)

⚫ Runtime Timeout: Some cases have no obvious

errors but exceed the processing time limit.

Secondly, the research still has limitations in

experimental design: (1) Small sample size: Only 100

problems from the HumanEval-X dataset were used,

which is not enough to comprehensively represent C++

programming skills in practice; (2) The scope of model

evaluation is still limited: The study only uses accuracy as

the main criterion; there are no other supplementary

indicators such as code comprehensibility, complexity, or

pedagogical quality. (3) Limited testing devices: Only

evaluated on one phone model (Samsung A52S) and one

computer configuration (RTX 4070), so it does not fully

reflect the model's deployment capabilities on other

popular devices; (4) Lack of real user verification: The

research has not conducted surveys of learners or analyzed

the real experiences of end users; (5) Not compared with

SOTA models: The results have not been placed in a

broader context to compare with other modern models that

may achieve higher accuracy or better optimization

capabilities.

Development direction:

Based on the experimental results and the identified

limitations, this study proposes several development

directions to further enhance and expand the application in

the future. Firstly, the research aims to develop a complete

C++ programming learning application that is user-

friendly and capable of running offline on devices with

standard configurations. This application will integrate

optimized LLMs and support features such as code

generation, error correction suggestions, line-by-line

explanations, automatic assessment, and practice

exercises.

In parallel, the study focuses on improving the accuracy

of code generation through fine-tuning on specialized

datasets for the C++ language, as well as analyzing and

addressing common errors such as compilation errors,

logic errors, and runtime failures. Optimizing the

quantization algorithms is also a key direction, involving

the exploration and application of advanced techniques

like K-Quant, Group-wise Quantization, or Mixed

Precision to achieve a balance between processing

efficiency and resource consumption. These optimizations

will allow the models to perform better on mobile devices

or low-end computers.

Additionally, the study aims to expand support to other

popular programming languages such as Python, Java, or

JavaScript, in order to serve a broader range of learners.

Personalizing the learning process is also a key focus,

with the development of a system to track user progress

and analyze errors to provide tailored learning suggestions

based on individual skill levels and learning needs.

Finally, the study aims to enhance the natural interaction

and communication capabilities between the learner and

the model, allowing the model to act as a virtual tutor that

can flexibly respond to questions. This interactive

approach supports learners in developing a proactive and

effective problem-solving mindset.

3. CONCLUSION

In the context of the increasing demand for

programming learning and the strong development of

artificial intelligence-based support tools, the topic

"Feasibility and Performance Study of LLM on Mobile

Devices for Supporting C++ Programming Learning" has

demonstrated the feasibility of deploying large language

models directly on mobile devices. Through practical

experiments with the DeepSeek-Coder-1.3B model, the

study shows that the model can operate stably, achieve

significant accuracy and consume resources at a suitable

level, thereby affirming the application potential of LLM

in supporting offline programming learning.

Due to time and resource constraints, the study has not

yet conducted statistical significance testing. This is an

important direction that needs to be implemented in future

studies to determine the reliability of the differences in

results between the models. In addition, the study

analyzed the effectiveness of the quantization technique in

reducing the model size and increasing the processing

speed. However, this process also leads to some

limitations in accuracy. Tracking the compilation errors

and execution errors generated by the model has provided

practical insights into the AI's C++ code generation

capabilities and also serves as a basis for proposing

improvements to enhance the quality of learning support.

 In the future, the research team aims to develop a

dedicated application with a friendly interface, integrating

step-by-step learning instructions, practice exercises, and

progress tracking tools. Further research will focus on

improving the accuracy of the generated code, optimizing

the quantization technique to suit low-configuration

devices, as well as expanding to other programming

languages such as Python or Java. The results achieved

from the project not only affirm the potential of LLM in

programming education but also open up development

directions for smart learning tools, contributing to

improving the quality of information technology training

in the future.

Feasibility and performance study of LLMS on mobile devices for supporting C++ programming learning

JSLHU, Issue 22, September 2025

12

4 REFERENCES

[1] P. Ross, "Sistemas de tutoría inteligente," Intelligent Systems

Journal, vol. 3, no. 4, pp. 194–203, 1987.

[2] G.-J. Hwang, "Un modelo de mapa conceptual para el

desarrollo de sistemas de tutoría inteligente," Computers &

Education, vol. 40, no. 3, pp. 217–235, 2003.

[3] T. Baker y L. Smith, "¿Educ-AI-ción reiniciada? Explorando

el futuro de la inteligencia artificial en escuelas y colegios,"

Futuro de la Educación, 2019.

[4] S. Bayne, "Teacherbot: Interventions in automated teaching,"

Teaching in Higher Education, vol. 20, no. 4, pp. 455–467, 2015.

[5] "Google responds to DeepSeek with the ultra-lightweight AI

model Gemma 3," Dantri, Mar. 2025. [Online]. Available:

https://dantri.com.vn/cong-nghe/google-dap-tra-deepseek-bang-

mo-hinh-ai-sieu-nhe-gemma-3-20250313105241524.htm.

[6] "Optimizing large language models with LLaMACpp and

running on mobile," AI Lab, 2024. [Online]. Available:

https://ailab.siu.edu.vn/article/49/toi-uu-mo-hinh-ngon-ngu-lon-

voi-llamacpp-va-chay-tren-ien-thoai.

[7] "What is DeepSeek?" Growstack, 2024. [En línea].

Disponible en: https://www.growstack.vn/deepseek-la-gi.

[8] Gemini Team, "Gemma: Open models based on Gemini

research and technology," 2024.

[9] Gemini Team, "Gemini: Una familia de modelos

multimodales altamente capaces," 2023.

[10] "Informe Técnico de Gemma 3," Google AI, 2024.

[11] "Gemma 3 model overview," Google AI for Developers,

2024. [En línea]. Disponible:

 https://developers.google.com/gemma3.

[12] LLaMA Team, "The Llama 3 Herd of Models," AI @ Meta,

2024.

[13] "DeepSeek-Coder: Cuando el Modelo de Lenguaje Grande

se Encuentra con la Programación," El Auge de la Inteligencia

de Código, 2024.

[14] "Application of chatbots in the field of education,"

VmixGPT, 2024. [Online]. Available: https://vmixgpt.com/ung-

dung-chatbot-trong-linh-vuc-giao-duc.

[15] "Application of chatbots in training," OES, 2024. [Online].

Available: https://oes.vn/ung-dung-chatbot-trong-dao-tao.

[16] "A visual guide to quantization," Maarten Grootendorst's

Newsletter, 2024. [En línea]. Disponible:

 https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-

quantization.

[17] "Llama.cpp pull request #1684," GitHub, 2024. [En línea].

Disponible en: https://github.com/ggml-org/llama.cpp/pull/1684.

https://dantri.com.vn/cong-nghe/google-dap-tra-deepseek-bang-mo-hinh-ai-sieu-nhe-gemma-3-20250313105241524.htm
https://dantri.com.vn/cong-nghe/google-dap-tra-deepseek-bang-mo-hinh-ai-sieu-nhe-gemma-3-20250313105241524.htm
https://ailab.siu.edu.vn/article/49/toi-uu-mo-hinh-ngon-ngu-lon-voi-llamacpp-va-chay-tren-ien-thoai
https://ailab.siu.edu.vn/article/49/toi-uu-mo-hinh-ngon-ngu-lon-voi-llamacpp-va-chay-tren-ien-thoai
https://www.growstack.vn/deepseek-la-gi
https://developers.google.com/gemma3
https://vmixgpt.com/ung-dung-chatbot-trong-linh-vuc-giao-duc
https://vmixgpt.com/ung-dung-chatbot-trong-linh-vuc-giao-duc
https://oes.vn/ung-dung-chatbot-trong-dao-tao
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://github.com/ggml-org/llama.cpp/pull/1684

