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THÔNG TIN BÀI BÁO TÓM TẮT 

Học lập trình C++ là một quá trình phức tạp, đòi hỏi người học nắm vững cả cú 

pháp lẫn tư duy thuật toán. Nghiên cứu này nhằm đánh giá khả năng triển khai mô 

hình ngôn ngữ lớn (LLM) trên thiết bị di động để hỗ trợ quá trình học lập trình 

C++ hiệu quả hơn. Các mô hình được thử nghiệm gồm DeepSeek-Coder, Llama và 

Gemma, với các kỹ thuật tối ưu như lượng tử hóa (quantization) 4-bit và 8-bit 

nhằm giảm mức tiêu thụ tài nguyên. Thí nghiệm được thực hiện để đo độ chính 

xác khi giải bài tập C++, mức sử dụng bộ nhớ (VRAM, RAM) và tốc độ suy luận 

ở các mức tối ưu khác nhau. Kết quả cho thấy DeepSeek-Coder-1.3B giải đúng 

khoảng 40% bài, tiêu tốn 3.2GB VRAM – phù hợp cho điện thoại. Trong khi đó, 

DeepSeek-V2-Lite-Instruct (4-bit) đạt độ chính xác 64% nhưng yêu cầu 6GB 

VRAM, thích hợp hơn với laptop. Sau lượng tử hóa, mô hình có thể hoạt động ổn 

định trên thiết bị như Samsung A52S (RAM 8GB), với mức sử dụng RAM hệ 

thống khoảng 1.9GB – không bao gồm phần dùng cho hệ điều hành. Kết luận, việc 

triển khai LLM trên thiết bị di động là hoàn toàn khả thi và đầy tiềm năng trong 

việc hỗ trợ học lập trình. Nhóm nghiên cứu sẽ tiếp tục cải tiến hiệu năng và giao 

diện người dùng trong các bước tiếp theo. 
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THÔNG TIN BÀI BÁO ABSTRACT 

Learning C++ programming is a complex process that requires mastering both 

syntax and algorithmic thinking. This study aims to evaluate the feasibility of 

deploying large language models (LLMs) on mobile devices to support users in 

learning C++ more effectively. The research involved testing models such as 

DeepSeek-Coder, Llama, and Gemma, and applying optimization techniques like 

4-bit and 8-bit quantization to reduce hardware resource consumption. 

Experiments measured model accuracy on C++ tasks, memory usage (VRAM, 

RAM), and inference speed under different optimization levels. Results showed 

that DeepSeek-Coder-1.3B achieved the highest accuracy among mobile-friendly 

models, solving around 40% of C++ problems with 3.2GB of VRAM—suitable for 

smartphones. Meanwhile, DeepSeek-V2-Lite-Instruct (4-bit) reached 64% 

accuracy but consumed 6GB VRAM, making it more appropriate for laptops. After 

quantization, the model ran stably on devices such as the Samsung A52S (8GB 

RAM), requiring approximately 1.9GB of system RAM (excluding OS usage), 

which ensures acceptable performance on mid-range mobile devices. The findings 

confirm that deploying LLMs on mobile platforms is feasible and holds significant 

potential in supporting programming education. In the future, the research team 

will continue to optimize performance and improve the user interface to enhance 

the overall learning experience. 
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1. INTRODUCTION 

In the rapidly advancing era of technology, 

programming has become an indispensable skill for 

information technology students. However, learning 

programming – especially with the C++ language – is a 

significant challenge for many students, particularly in the 

initial stages of learning. The main difficulties stem from 

the need to master syntax, algorithmic thinking, and the 

ability to analyze and solvelearning. Theith the rapid 

development of artificial intelligence, large language 

models (LLM) have proven their potential to effectively 

support the process of learning programming.Many recent 

studies, such as Khan et al. (2023) and Finnie-Ansley et 

al. (2022), indicate that models like Codex and ChatGPT 

can generate syntactically correct code, assist in 

debugging, and provide algorithm explanations, thereby 

helping to improve learning outcomes for programming 

students. 

In addition, the trend of deploying LLMs on mobile 

devices is also attracting significant interest in the 

research community, with projects like LLaMA.cpp, 

MLC-LLM, and GGML demonstrating the potential to 

run compact models directly on mainstream hardware 

(Jiang et al., 2023; Deng et al., 2024).However, these 

studies mainly focus on model optimization techniques 

and have not deeply evaluated the applicability in 

education, especially in supporting programming learning 

through offline LLMs. 

Current platforms supporting programming learning, 

such as W3Schools, Codecademy, or LeetCode, mainly 

require continuous Internet connectivity and provide 

limited targeted support for the C++ language. Moreover, 

most current AI tools (such as ChatGPT, Copilot) require 

a network connection and substantial hardware resources, 

making them difficult for students with limited learning 

conditions to access. 

From there, the research gap is identified: there is 

currently no solution that implements compact, offline 

LLMs on mobile devices to support learning C++ 

programming, while also providing a comprehensive 

evaluation of performance, accuracy, and practical 

feasibility. 

Therefore, the topic "Feasibility and Performance Study 

of LLM on Mobile Devices for Supporting C++ 

Programming Learning" was born with the aim of 

realizing the deployment of LLM models directly on 

smartphones, enabling students to learn programming 

anytime, anywhere.The project focuses on open-source 

models, small in size, optimized to run offline.Through 

this, the research team aims to achieve goals such as: 

Evaluating the performance and accuracy of LLM after 

quantization when running on mobile devices;Compare 

different models (DeepSeek, LLaMA, Gemma...) with 

different quantization formats (4-bit, 8-bit); Analyze the 

code generation capabilities and common errors of the 

models; Propose a direction for developing an offline 

LLM-integrated programming learning application for 

students. 

The novel contributions of the topic include: (1) A 

comprehensive evaluation of LLM models quantized on 

mobile devices for the C++ code generation task; (2) 

Analysis of code generation errors, resource performance, 

and execution time, thereby determining the feasibility of 

application in resource-constrained learning 

environments; (3) Suggesting the design of an offline AI-

supported learning system, opening a new direction for 

personalized education without the need for network 

connectivity. 

2. CONTENT 

2.1 Research methods 

Dataset Preparation 

The research uses the HumanEval-X (C++) dataset 

from HuggingFace, which is used as the main benchmark 

to evaluate large language models. This is a dataset 

consisting of 164 diverse C++ programming problems, 

covering basic programming concepts focused on 

foundational knowledge such as basic syntax, conditional 

structures, loops, functions, and arrays. 

Some notable statistics from 100 random problems: 

Arrays: 61 problems (61.0%). 

If_Else: 90 problems (90.0%). 

Loops: 90 problems (90.0%). 

Some notable statistics from the total number of 

problems: 

Loops: 146 problems (90.1%). 

If_Else: 140 problems (86.4%). 

Arrays: 99 problems (61.1%) 

Each problem includes a problem description, function 

declaration, and unit test set (input and output), but does 

not contain a solution – suitable for evaluating the model’s 

ability to generate code rather than for training. 

HumanEval-X was chosen because of its high 

representativeness to basic C++ programming skills and 

its extensibility to check correctness through automated 

testing. 

Model Training and Optimization 

In this study, the authors did not retrain or fine-tune the 

large language models from scratch. Instead, the Gemma, 

LLaMA, and DeepSeek models were selected from pre-

trained open-source models. This selection is based on 

criteria such as small size (from 1 to under 30 billion 

parameters), compatibility with the GGUF format, 

popularity within the open-source community, and the 

ability to deploy on common devices. These models are 

all designed to generate source code for programming 

tasks, especially for short and clearly structured tasks as 

found in the HumanEval-X (C++) dataset. 

After selecting the model, the team proceeded with the 

optimization process through quantization to reduce 

hardware resource requirements while still ensuring 

reasonable processing performance. This process involves 

converting the model's weights from high-precision 

floating-point format (FP32) to lower-precision integer 

formats such as INT8 or INT4, significantly reducing the 

model size and processing speed. Two quantization 

methods are applied, including: 
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Symmetric Quantization: All weight values are scaled 

to a value range symmetric around 0, suitable for balanced 

weight distributions. 

Asymmetric Quantization: Weights are scaled in a 

skewed value domain, reducing information loss with 

asymmetric skewed distributions. 

To perform the quantization process and deploy the 

model, the team uses the llama.cpp library – an open-

source framework that allows running LLM directly on 

common CPUs and GPUs. Llama.cpp supports the GGUF 

(GPT-Generated Unified Format) – helping to reduce 

model size and optimize operation in resource-limited 

environments, typically mobile devices. 

The GGUF quantization methods used 

The specific quantization formats used in the study 

include: (1) Q4_K_M: Applied to 4-bit models such as 

DeepSeek-Coder-1.3B-it and LLaMA-3.2-3B-it-4bit; (2) 

Q8_0: Used for 8-bit models, such as LLaMA-3.2-3B-it-

8bit; (3) Q5_K_M: Used in internal testing but not 

selected for reporting because it is not as optimized as 

Q4_K_M in mobile environments. 

Especially, llama.cpp supports the K-Quant technique, a 

modern quantization method that divides the model into 

blocks and super-blocks, allowing for precise layer-wise 

quantization. K-Quant uses a selective strategy and weight 

rounding based on the scale factor to optimize the balance 

between model size and inference accuracy. 

After optimization, the models are deployed in a testing 

environment and evaluated using the HumanEval-X (C++) 

dataset, with 100 randomly selected problems. Each 

problem is input into the model as a prompt, and the 

generated code is tested using a predefined unit test set to 

determine the metrics: accuracy, inference time, and 

resource consumption (RAM/VRAM). The evaluation 

process helps determine the model's performance on both 

personal computers and mobile devices, thereby assessing 

its feasibility for real-world deployment. 

2.2 Results and Evaluation 

Based on the implementation techniques in the previous 

section, the study evaluates the performance of multiple 

LLM models with scales from 1 to 27 billion parameters, 

to determine the feasibility of deployment on general-

purpose hardware. The experiments are performed in a 

standardized environment with Docker, using Linux 

operating system, C++17 compiler, Python 11 and CUDA 

12.5. The hardware configuration includes Intel Core i5-

12400F CPU, 32GB RAM and Nvidia RTX 4070 Super 

12GB GPU for desktop; and Samsung A52S phone 

(Snapdragon 778G 5G, 8GB RAM) running Android 14 

for mobile testing. 

The test dataset includes 100 C++ problems randomly 

selected from the HumanEval-X set with fixed seeds, 

ensuring objectivity. For each problem, the model is asked 

to generate code from the prompt, and the results are 

checked through predefined unit test scripts. 

Evaluation of models under 8 billion parameters 

The evaluated models include Gemma-3-1B-it, Llama-

3.2-3B-it, DeepSeek-Coder-1.3B-it and their quantized 

versions (4-bit, 8-bit). For small models, the results are as 

follows: 

 

Figure 1. State chart of the number of problems of models under 

8 billion parameters 

⚫ Regarding the number of successes: The DeepSeek-

Coder-1.3B-it model achieved outstanding 

performance with 40 out of 100 problems solved 

correctly, while Gemma-3-1B-it only achieved 15 

out of 100. The LLaMA 3.2-3B models have average 

performance, ranging from 29 to 32 successful 

problems. This can be explained by the fact that 

DeepSeek-Coder-1.3B-it was specially trained for 

programming tasks (code-specialized tuning), which 

helps increase accuracy and the ability to generate 

valid code higher than general language models like 

Gemma or LLaMA. 

⚫ Regarding the number of failures due to not passing 

the unit test (Execution Failed): DeepSeek-Coder-

1.3B-it had the lowest number of failures (47 times), 

showing a high ability to generate approximate code. 

Meanwhile, Gemma-3-1B-it had the highest failure 

rate (63 times). The LLaMA 3.2-3B models had 

average performance, ranging from 58 to 61 failures. 

⚫ Regarding the number of failures due to code 

compilation (Compilation Failed): DeepSeek-Coder-

1.3B-it also shows stability with only 13 code 

compilation failures, compared to 22 code 

compilation failures in Gemma-3-1B-it. The LLaMA 

3.2-3B models have average performance, ranging 

from 8 to 10 failures. 

 

Figure 2. Capacity chart of models under 8 billion parameters 

⚫ Regarding resource usage: Llama-3.2-3B-it-4bit uses 

the least VRAM (2.5GB), while the non-quantized 

version of Llama-3.2-3B exceeds the common 6GB 
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VRAM limit on mid-range laptops (6.5GB). 

Although it uses less VRAM, models like Llama-3.2-

3B-it-4bit do not achieve the same high performance 

as DeepSeek, indicating that quantization needs to be 

combined with good pretraining to maintain 

accuracy. Additionally, the Deepseek-Coder-1.3b 

model can occupy 50% of the user's computer's 

VRAM capacity. (3.2GB). The Gemma-3-1b-it 

model has the second lowest VRAM usage, only 

after the Llama-3.2-3B-bit-4bit. 

 

Figure 3. Execution time graph of models under 8 billion 

parameters. 

⚫ Regarding inference speed: Quantization 

significantly reduces execution time. Llama-3.2-3B-

it-4bit has the fastest processing speed. The 

DeepSeek-Coder-1.3B-it model has 37.93% higher 

accuracy than Llama-3.2-3B-4bit but only takes 

12.8% more inference time. 

Evaluating models over 8 billion parameters 

The models in this group include Llama-3-8B-it, Gemma-

3-12B-it, DeepSeek-Coder-V2-Lite-Instruct and Gemma-

3-27B-it. To ensure the ability to deploy on common 

hardware, the models are quantized down to 4-bit or 8-bit. 

The results show: 

 

Figure 4. State diagram of the number of problems for models 

with 8 billion parameters or more 

⚫ Accuracy: DeepSeek-Coder-V2-Lite-Instruct-4bit 

achieved the highest performance with an accuracy 

rate of up to 64%, surpassing Llama-3-8B-it-4bit by 

73%. The superiority of DeepSeek-Coder-V2-Lite-

Instruct is largely due to the distillation technique 

from larger models like CodeLlama-34B, which 

helps the model retain important knowledge while 

reducing the number of parameters. Compared to 

recent reports on the Open LLM Leaderboard, this 

model performs at least as well as or better than 

StarCoder-15B on some programming tasks, despite 

being significantly smaller in size. 

 

Figure 5. Capacity diagram of models with 8 billion parameters 

or more. 

⚫ Storage capacity and architecture: Thanks to the 

GGUF format, the model can be split: part runs on 

the GPU, the rest on the RAM. Choosing 11 layers to 

load onto the GPU based on the 6GB VRAM limit 

shows a balance between speed and memory, but this 

number has not yet proven to be globally optimal. 

Experiments with different numbers of layers (e.g., 

8, 13, 15) could help determine the optimal 

performance threshold. 

 

Figure 6. Execution time chart of models with 8 billion 

parameters or more 

⚫ Inference speed: The combination of GPU and CPU 

computation increases inference time due to task 

switching latency. However, DeepSeek-Coder-V2-

Lite-Instruct-4bit still maintains reasonable 

processing speed and high accuracy, demonstrating 

the potential of the hybrid architecture (CPU + GPU) 

in non-specialized environments. However, 

DeepSeek-Coder-V2-Lite-4bit still maintains a good 

speed, completing about 60% of the total number of 

problems. 

General summary: 

The Deepseek-Coder-1.3b-it model will be the most 

suitable model to be able to run directly on mobile phones 

while still maintaining high accuracy.  

The Deepseek-Coder-V2-Lite-Instruct-4bit model will be 

the suitable model to run on computers of ordinary users.  

2.3 Limitations and development directions 

Limitations:  
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The current study still has some notable limitations in 

both technical and methodological aspects. 

First, the errors from the collected logs indicate two 

main groups of errors: 

1. Compilation Failed: Accounts for a significant 

proportion, including common errors such as: 

⚫ Missing #include standard library (<stack>, 

<vector>, <string>, etc.) 

⚫ Not using std:: or missing using namespace std; 

⚫ Scope error (using undeclared variables) 

⚫ Syntax error (;, {}, ()) and data type error. 

2. Execution Failed: Includes errors such as: 

⚫ Assertion Failed: The code runs but returns 

incorrect results compared to the test case. 

Algorithmic logic errors are the majority (e.g., 

false conditions, incomplete string processing, 

off-by-one…) 

⚫ Runtime Timeout: Some cases have no obvious 

errors but exceed the processing time limit. 

Secondly, the research still has limitations in 

experimental design: (1) Small sample size: Only 100 

problems from the HumanEval-X dataset were used, 

which is not enough to comprehensively represent C++ 

programming skills in practice; (2) The scope of model 

evaluation is still limited: The study only uses accuracy as 

the main criterion; there are no other supplementary 

indicators such as code comprehensibility, complexity, or 

pedagogical quality. (3) Limited testing devices: Only 

evaluated on one phone model (Samsung A52S) and one 

computer configuration (RTX 4070), so it does not fully 

reflect the model's deployment capabilities on other 

popular devices; (4) Lack of real user verification: The 

research has not conducted surveys of learners or analyzed 

the real experiences of end users; (5) Not compared with 

SOTA models: The results have not been placed in a 

broader context to compare with other modern models that 

may achieve higher accuracy or better optimization 

capabilities. 

Development direction:  

Based on the experimental results and the identified 

limitations, this study proposes several development 

directions to further enhance and expand the application in 

the future. Firstly, the research aims to develop a complete 

C++ programming learning application that is user-

friendly and capable of running offline on devices with 

standard configurations. This application will integrate 

optimized LLMs and support features such as code 

generation, error correction suggestions, line-by-line 

explanations, automatic assessment, and practice 

exercises. 

In parallel, the study focuses on improving the accuracy 

of code generation through fine-tuning on specialized 

datasets for the C++ language, as well as analyzing and 

addressing common errors such as compilation errors, 

logic errors, and runtime failures. Optimizing the 

quantization algorithms is also a key direction, involving 

the exploration and application of advanced techniques 

like K-Quant, Group-wise Quantization, or Mixed 

Precision to achieve a balance between processing 

efficiency and resource consumption. These optimizations 

will allow the models to perform better on mobile devices 

or low-end computers. 

Additionally, the study aims to expand support to other 

popular programming languages such as Python, Java, or 

JavaScript, in order to serve a broader range of learners. 

Personalizing the learning process is also a key focus, 

with the development of a system to track user progress 

and analyze errors to provide tailored learning suggestions 

based on individual skill levels and learning needs. 

Finally, the study aims to enhance the natural interaction 

and communication capabilities between the learner and 

the model, allowing the model to act as a virtual tutor that 

can flexibly respond to questions. This interactive 

approach supports learners in developing a proactive and 

effective problem-solving mindset. 

3. CONCLUSION 

In the context of the increasing demand for 

programming learning and the strong development of 

artificial intelligence-based support tools, the topic 

"Feasibility and Performance Study of LLM on Mobile 

Devices for Supporting C++ Programming Learning" has 

demonstrated the feasibility of deploying large language 

models directly on mobile devices. Through practical 

experiments with the DeepSeek-Coder-1.3B model, the 

study shows that the model can operate stably, achieve 

significant accuracy and consume resources at a suitable 

level, thereby affirming the application potential of LLM 

in supporting offline programming learning. 

Due to time and resource constraints, the study has not 

yet conducted statistical significance testing. This is an 

important direction that needs to be implemented in future 

studies to determine the reliability of the differences in 

results between the models. In addition, the study 

analyzed the effectiveness of the quantization technique in 

reducing the model size and increasing the processing 

speed. However, this process also leads to some 

limitations in accuracy. Tracking the compilation errors 

and execution errors generated by the model has provided 

practical insights into the AI's C++ code generation 

capabilities and also serves as a basis for proposing 

improvements to enhance the quality of learning support. 

 In the future, the research team aims to develop a 

dedicated application with a friendly interface, integrating 

step-by-step learning instructions, practice exercises, and 

progress tracking tools. Further research will focus on 

improving the accuracy of the generated code, optimizing 

the quantization technique to suit low-configuration 

devices, as well as expanding to other programming 

languages such as Python or Java. The results achieved 

from the project not only affirm the potential of LLM in 

programming education but also open up development 

directions for smart learning tools, contributing to 

improving the quality of information technology training 

in the future. 
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