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1. INTRODUCTION

Currently, the development of variable-length
segmentation algorithms remains limited. Historically,
most research has primarily focused on fixed-length
segmentation algorithms, where segments are divided into
equal-length intervals. This approach introduces several
issues and inherent limitations when applied to real-world
scenarios, especially in the context of anomaly detection
[10]. Fixed-length segmentation algorithms are often
constrained by their rigid structure, which may result in
poor adaptability to dynamic and complex data patterns.
Therefore, variable-length segmentation algorithms offer
significant advantages, particularly in anomaly detection
tasks, by allowing more flexible and adaptive
segmentation based on the intrinsic characteristics of the
time series data. [1, 2, 6]:

High Flexibility: Variable-length segments can be
dynamically adjusted based on the characteristics of the
data, allowing for more accurate representation of changes
or critical events within the time series.

Improved Detection Capability:  Variable-length
segmentation enables the identification of subtle
anomalies that fixed-length segments may overlook,
thereby increasing the accuracy and reliability of anomaly
detection systems.

Broad Applicability: This approach is suitable for a
wide range of data types, from real-time streaming data to
unstructured data, and across various domains including
industrial systems, healthcare, and finance.

Despite these notable advantages, most current research
has yet to focus deeply on the development of variable-
length segmentation algorithms, particularly for anomaly
detection tasks [5]:

Lack of In-depth Research: Existing studies still
predominantly concentrate on fixed-length segmentation
algorithms, resulting in a shortage of innovative models
and methods tailored to more complex problem domains.

Limited Real-world  Adoption:  Variable-length
segmentation models have not been widely implemented
in anomaly detection systems, which compromises the
effectiveness and precision of such systems.

High Computational Cost: Traditional approaches, such
as exhaustive search techniques, are often used to
determine optimal max-error values and to identify
suitable segmentation strategies for each specific type of
time series. These methods are time-consuming and
computationally expensive.

2. RELATED WORK
2.1 Overview of the Method

Survey of Existing Segmentation Methods: A
comprehensive evaluation of current segmentation
algorithms is conducted based on key criteria such as
accuracy, computational complexity, and adaptability to
highly volatile data. Each method’s strengths and
weaknesses are analyzed to better understand their scope
of application and inherent limitations.

Application to Time Series Anomaly Detection: The
surveyed segmentation methods are then applied to the
problem of anomaly detection in time series data [9]. The
performance of each method is assessed in terms of its
effectiveness in identifying anomalies and detecting
significant changes within the time series.

Proposing a Method for Selecting Appropriate
Segmentation Algorithms: A methodology is developed
for selecting the most suitable segmentation algorithm
tailored to specific types of time series data. This includes
proposing a set of evaluation criteria and assessment
methods to assist users in identifying the most appropriate
algorithm for their anomaly detection tasks.

Addressing the max error Parameter Selection
Problem: The max_error value is a critical parameter in
time series segmentation algorithms, enabling users to
control the trade-off between segmentation accuracy and
computational complexity. Proper configuration of the
max_error helps to optimize the segmentation process by
balancing approximation precision with processing
efficiency. Therefore, this paper investigates and proposes
an optimized method for the fast and accurate selection of
the max_error value. Multiple max_error configurations
are experimented with to determine the optimal setting for
each specific type of time series data.

Evaluation and Real-world Experiments: Extensive
real-world experiments are conducted on diverse time
series datasets to validate the effectiveness of the
proposed algorithms and methods. Experimental results
are analyzed to draw meaningful conclusions and provide
recommendations for practical applications.

2.2 Sliding Windows Segmentation Algorithm

The Sliding Window Algorithm, also known as the
brute-force or one-pass approach [4, 7], is one of the most
commonly used methods for time series segmentation.
This algorithm begins by selecting the first data point as
an anchor point. An initial window size is then defined,
and based on this size, the approximation error for the
potential segment is computed. Next, the window size is
incrementally increased until the approximation error
exceeds a predefined threshold. At that point, a segment is
created using the largest possible window size that still
satisfies the error constraint. This process is repeated until
the sliding windows have covered the entire time series.
The anchor point is updated to the data point immediately
following the previously formed segment to continue the
procedure [8].
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Figure 1. Sliding Windows Algorithm Flowchart.
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2.3 Top-Down Segmentation Algorithm

The Top-Down Segmentation Algorithm begins by
treating the entire time series as a single initial segment.
The algorithm then searches for a split point that divides
the series into two subsequences such that the difference
between the two resulting segments is maximized. Next,
the approximation error is computed for both subsegments
and compared against a predefined error threshold. This
splitting process is recursively repeated on each segment
until the approximation error for all segments falls within
the acceptable threshold [8].

Figure 2. Top-Down Algorithm Flowchart.

2.4 Bottom-Up Segmentation Algorithm

The Bottom-Up Segmentation Algorithm operates in
the reverse manner of the previously described Top-Down
approach. It begins by dividing the original time series of
length n into n—1 individual segments. The algorithm
then iteratively decides whether to merge a segment with
its left or right neighbor, based on the increase in
approximation error that would result from the merge.
This merging process continues until the approximation
error of a candidate segment exceeds a predefined

threshold [8].
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Figure 3. Bottom — Up Algorithm Flowchart.

2.5 SWAB Segmentation Algorithm

The SWAB Algorithm (Sliding Window And Bottom—
Up) is a hybrid segmentation method that combines the
Sliding Window approach with the Bottom-Up algorithm.
This method is designed to handle streaming data by
incrementally incorporating new data points into a buffer
as they arrive, making it suitable for potentially
unbounded data streams. However, properly defining the
initial buffer size is crucial for the algorithm’s
effectiveness [8].

In SWAB, the buffer size is fixed and chosen to be
large enough to generate 5 to 6 initial segments. If the
buffer is too large, the resulting segmentation will closely
resemble that of the Bottom-Up algorithm. Conversely, if
the buffer is too small, the segmentation result will be
similar to that produced by the Sliding Window method.
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Figure 4. SWAB Algorithm Flowchart.

3. SURVEY AND EVALUATION OF THE
EFFECTIVENESS OF SEGMENTATION
ALGORITHMS

To wverify the feasibility and effectiveness of the
proposed method for selecting appropriate segmentation
algorithms tailored to different types of time series data,
the paper conducts a series of experiments focusing on
variable-length segmentation algorithms. During these
experiments, the study applies Sliding Window, Bottom-
Up, Top-Down, and SWAB (Sliding Window and
Bottom-Up) segmentation techniques across multiple
datasets. This enables the paper to draw conclusions
regarding which segmentation algorithm is best suited for
each specific type of time series.

Each algorithm produces multiple segments. In order to
evaluate the capability of each algorithm to detect
anomalies and significant changes within the time series
when applied following the proposed method performance
is measured using the Fl-Score, a common metric in
classification tasks that balances precision and recall.

The first step is to identify which time points are
considered anomalous. The study begins by applying the
Bottom-Up algorithm to a segmented time series extracted
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from a dataset that will be introduced in the following
section of the paper.

Figure 5. Applying the Bottom-Up Algorithm to a Pre-
Segmented Time Series

We use a simple formula to determine whether a
segment is anomalous by assigning a segment s; defined
by two endpoints (Xii, yi1) va (Xi2, yi2). We then compute
the distance (d) from this segment to both the preceding
and succeeding segments using the following formula:

ds, = |(J’t1 - J’i—12-) + (}’tz - J’i+11-)|

This formula is used to calculate the deviation between
the preceding and succeeding points of a segment. Based
on these deviations, the segment with the largest deviation
is selected as a candidate for anomaly detection.

By selecting the optimal max_error value for each
dataset (the selection process for max error will be
described in a subsequent section), and identifying the
segment that best describes the anomaly, the paper
evaluates segmentation performance using classification
metrics. Specifically, performance is measured using the
F1-Score, a harmonic mean that combines both precision
and recall. The concepts of precision and recall are
defined as follows [3]:

Precision measures the proportion of segments detected
as anomalous that are actually true anomalies. In other
words, it is the ratio between the number of correctly
detected anomalous segments (True Positives) and the
total number of segments identified as anomalies (i.c.,
True Positives + False Positives). The formula is:

True Positives (TP)

Precision = — —
True Positives (TP) + False Positives (FP)
Where:
True Positives (TP): The number of truly
anomalous segments that were correctly
identified.

False Positives (FP): The number of segments
that were incorrectly identified as anomalies (i.e.,
they are normal segments labeled as anomalous).

Recall measures the proportion of actual anomalous
segments that were successfully detected. In other words,
it is the ratio between the number of correctly identified
anomalous segments (True Positives) and the total number
of actual anomalies (i.e., True Positives + False
Negatives). The formula is:

Recall =

True Positives (TP)
True Positives (TP) + False Negatives (FN)

Where:

True Positives (TP): The number of truly anomalous
segments that were correctly detected.

False Negatives (FN): The number of truly anomalous
segments that were not detected by the algorithm.

F1-Score is a harmonic mean of Precision and Recall,
providing a balanced metric that reflects the segmentation
model’s performance in terms of both correctness and
completeness. It is especially useful when there is an
uneven class distribution or when both false positives and
false negatives are costly. The formula is:

Precision X Recall

F1-Score =2 x

Precision + Recall

Thus, precision indicates the proportion of segments
identified by the algorithm as anomalous that are actually
true anomalies, while recall reflects the proportion of
actual anomalous segments that were successfully
detected by the algorithm. For segments with an F1-Score
greater than 0.7, we consider the corresponding
anomalous sequence to be accurately detected [10].

4. EXPERIMENTAL RESULTS
4.1 Dataset

The dataset used in this study is publicly available at
the following link:

https://drive.google.com/drive/folders/10D2DSt4T-
3WysolSLCda7hNYnoc62Mtq.

This dataset was collected from a testbed of the Secure
Water Treatment (SWaT) system a scaled-down but fully
operational water treatment plant prototype composed of
six distinct operational stages. The data collection spanned
11 consecutive days, with SWaT operating 24 hours a day.
During the first 7 days, the system functioned under
normal conditions without any cyberattacks. In the
remaining 4 days, multiple attack scenarios were
introduced. Sensor and actuator data were logged every
second to a central Historian server. In total, 946,722 data
points were collected, covering 51 attributes. The system
took approximately 5 hours to stabilize from an initial
empty state. Data recording started with the filling of
empty tanks, each of which required a different amount of
time to reach steady-state operations depending on its
stage in the treatment process. Network traffic data was
collected using a commercial monitoring device from
Check Point Software Technologies R2, which was
deployed within the SWaT testbed to capture
comprehensive network flows for security analysis.
However, only network traffic relevant to intrusion
detection was retained. This monitoring began as soon as
the testbed entered operational mode. The attacks were
executed on Level 1 of the SWaT network, which records
communication between the SCADA system and the
Programmable Logic Controllers (PLCs). These attacks
involved packet hijacking, where communication between
SCADA and PLCs was intercepted and modified to inject
spoofed sensor values into the system.

Labeling in this dataset was facilitated by a well-
controlled experimental setup.
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During the execution of the testbed, all system
operations and attack events were meticulously logged. As
a result, every attack launched during the data collection
phase was recorded and documented, with detailed
information presented in Table 1. For labeling of the
physical process variables, each data stream originating
from a sensor or actuator was individually collected and
stored in separate CSV files, making it easier to manage
and apply accurate labels for anomaly detection tasks.

Table 1. Attack Logs

Information Description

Start time Time when attack starts

End time Time when attack ends
Attack Points Sensors or actuator which will be

compromised
Start State Current status of the point
Attack Description of attack

Attack Value Substituted value of sensor (based on

the attack)

Attacker’s Intent The intended affect of the attack

Below are some of the fields from the SWaT dataset,
presented as time series:

LIT301

P601 Status

Mv201

P101 Status

MV 501

P301 Status

Figure 6. The fields P601 Status, MV501, LIT301, MV201, P101
Status, and P301 Status from the SWaT dataset are represented
as time series.

Aperiodic time series: P601 Status, MV501

Periodic time series: LIT301, MV201, P101 Status,
P301 Status

In addition to the SWaT dataset, the study also
conducts experiments on synthetically generated datasets,

which include both aperiodic and periodic time series.
These datasets are designed to further evaluate the
performance and generalizability of the proposed
segmentation and anomaly detection methods under
varying data characteristics.

4.2 Experimental Results

The authors applied segmentation algorithms including
Sliding Window, Bottom-Up, Top-Down, and SWAB on
the previously introduced SWaT dataset, in combination
with synthetically generated datasets. The results obtained
from these experiments are presented in the following
tables:

Table 2. Performance on Aperiodic Data (® indicates that
the segmentation algorithm did not detect all anomaly points,

Y indicates that the segmentation algorithm successfully
detected all anomaly points, N stands for No, and Cyclic refers
to periodic time series).

Topdown Bottom-up SlidingWindow SWAB Cyclic
Id

1 N

()
SR NEES
SR NEES
&
z z

4

5

<
¢ & X
Z

MV501

X ¢ « X < < «

P301Status ® b4 N

Table 3. Performance on Low RSD Data (< 0,1) (¥
indicates that the segmentation algorithm did not detect all

anomaly pointsm, ~ indicates that the segmentation algorithm
successfully detected all anomaly points, N stands for No, Y
stands for Yes, Cyclic refers to periodic time series, and RSD
stands for Relative Standard Deviation).

Topdown Bottom-up SlidingWindow SWAB  Cyclic RSD
Id

3 v v v N 0.049803

4 4 ® v b4 N 0.017071

7 v v v v Y 0.035958

8 v ~ v v Y 0.004309

9 v v ~/ 4 Y 0.004903

10 * b4 v v Y 0.004551

LIT 301 v v Yy 0.097361
MV 501 v v ~ ~ N 0.057789

Table 4. Performance on Periodic Datasets (% indicates
that the segmentation algorithm did not detect all anomaly

points, Y indicates that the segmentation algorithm successfully
detected all anomaly points, Y stands for Yes, and Cyclic refers
to periodic time series).
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Topdown Bottom-up SlidingWindow SWAB Cyclic

Id
6 Vv x v b4 Y
7 v v v v Y
I3 v v v v Y
9 v v v v Y
0 X b 4 v v Y
LIT 301 v v v Y
MV 201 b4 v b4 Y
P101Status b4 * b4 v N
P601Status v v v v Y

Table 5. Performance on High RSD Data (RSD > 0.1) (%
indicates that the segmentation algorithm did not detect all

anomaly points, ' indicates that the segmentation algorithm
successfully detected all anomaly points, Y la Yes, N for No,
Cyclic indicates whether the time series is periodic, and RSD
refers to Relative Standard Deviation).

Topdown Bottom-up SlidingWindow SWAB  Cyclic RSD
Id

1 v v N 0.142541
2 v v v v N 0201003
p v % v ® v 0685629

5 v v v v N inf
vl X v % v v 0121035
Pl0IStatus 3¢ % x v v 0338061
P301Status v % % % N 0352146
P601Status v v v v Y 0361290

Overall, for aperiodic data, the Top-Down method
emerges as the best choice. For both periodic and
aperiodic datasets, the SWAB and Sliding Window
methods demonstrate higher effectiveness. However, the
Sliding Window method still performs worse than Top-
Down and SWAB in certain scenarios.

Next, we will examine the time complexity and runtime
performance of each segmentation method:

Table 6. Average Runtime Across All 16 Datasets and the
Dataset with the Highest Latency (Id = 5).

Top — Bottom - Sliding SWAB
down up window
Average  77.045958 12259271  5.436719  31.82843
time (s) 7
ID = 454.333333  78.800000  22.70000  74.31333
5(s) 0 3

Based on the survey across 16 datasets, it is observed
that the Top-Down algorithm is 15 to 20 times slower than
the Sliding Window algorithm. Compared to the Bottom-
Up and SWAB methods, Top-Down is also approximately
6 times slower.

4.3 Selection of the Maximum Allowable Error
(max_error)

All experimental results primarily depend on the
selection of the maximum allowable error (max_error).
Therefore, to determine the optimal max_error value
quickly and accurately, this paper calculates the
correlation between max error and various time series
characteristics such as relative standard deviation, number
of data points, mean value, median, variance, kurtosis,
among others.

The comprehensive analysis results are compiled into a
correlation table that illustrates the influence level of each
feature on the max error value across different
segmentation algorithms. This table highlights which time
series characteristics most significantly affect the selection
of max_error for optimal segmentation performance.

Correlation Matrix

Min(max_error]_Top_down

Max(max_error)_Top_down

Min{max_error]_Bottom_up

Max(max_error)_Bottom_up

Correlation

Min{max_error)_SLDW

Max(max_error) SLDW

Min{max_error)_SWAB

Max(max_error)_SWAB

mean
di

variance

minimum
m

Num_points
standard_deviation
absolute_sum_of_changes
mean_abs_change

laurts

Figure 7. Correlation Between Max-Error and Certain Time
Series Characteristics

Where: min(max_error) and max(max_error) represent
the range of maximum allowable errors within which
anomalies can actually be segmented. This range
generally corresponds to cases where the FI1-Score
exceeds 0.7. In situations where algorithms fail to detect
anomalies correctly (i.e., incorrect segmentation), we
resort to the most intuitive visualization of the anomalous
segment.

Based on Figure 7, it can be observed that the Sliding
Window algorithm, and especially the Top-Down
algorithm, are most strongly correlated with standard
deviation and variance. On the other hand, the Bottom-Up
and SWAB models exhibit a strong correlation with the
absolute sum of change and the mean absolute change.

5. CONCLUSION

This paper has presented a detailed approach to
developing and enhancing segmentation methods for
application in anomaly detection within time series data.
By collecting and constructing comprehensive datasets,
the study has established a solid foundation for
experimentation and evaluation.

Through the segmentation process and analysis of
empirical results, the improved methods have been
demonstrated to be effective in detecting anomalous
points. The selection of the maximum allowable error
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(max_error) has also been thoroughly discussed, enabling
optimization of both accuracy and efficiency for the
segmentation techniques.

The findings and insights from this paper provide a
valuable basis for future research and practical
applications in the field of anomaly detection in time
series data.
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