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THÔNG TIN BÀI BÁO TÓM TẮT 

Đánh giá kết cấu sau động đất đóng vai trò quan trọng trong việc xác định mức độ hư hỏng 

và hỗ trợ công tác ứng phó khẩn cấp. Bong tróc bê tông (spalling), biểu hiện qua sự tách lớp 

của vật liệu, là một chỉ dấu quan trọng của hư hỏng do động đất, ảnh hưởng đáng kể đến tính 

toàn vẹn của công trình. Nghiên cứu này phát triển một mô hình phân loại tự động bằng học 

sâu nhằm phân biệt giữa bê tông bị bong tróc và không bị bong tróc. Phương pháp đề xuất 

sử dụng học chuyển giao với ResNet50 và EfficientNet-B3 để tối ưu hóa độ chính xác và 

hiệu suất suy luận. Bộ dữ liệu nghiên cứu bao gồm các hình ảnh thu thập thực tế từ hiện 

trường sau động đất, được phân loại thành hai nhóm: bong tróc và không bong tróc. Các kỹ 

thuật tiền xử lý quan trọng như chuẩn hóa pixel, tăng cường dữ liệu và cân bằng lớp đã được 

áp dụng để cải thiện độ bền vững của mô hình và giải quyết vấn đề mất cân bằng dữ liệu. 

Kết quả đánh giá cho thấy ResNet50 đạt độ chính xác cao hơn (77% so với 71% của 

EfficientNet-B3), trong khi EfficientNet-B3 có độ nhạy cao hơn (90% so với 85%), giúp 

phát hiện tốt hơn các trường hợp bị bong tróc. Nghiên cứu cũng nhấn mạnh những thách 

thức từ sự đa dạng của bộ dữ liệu và đề xuất các hướng cải tiến trong tương lai như tăng 

cường dữ liệu nâng cao, tích hợp dữ liệu đa phương thức và học tự giám sát. Kết quả nghiên 

cứu góp phần thúc đẩy ứng dụng trí tuệ nhân tạo trong giám sát sức khỏe kết cấu, cung cấp 

một công cụ hiệu quả cho đánh giá hư hỏng sau thảm họa. 
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ARTICLE INFO ABSTRACT 

Received:  Mar 13rd, 2025 Post-earthquake structural assessment is critical in determining the extent of damage and 

guiding emergency response efforts. Spalling, characterized by the detachment of concrete 

layers, serves as a key indicator of seismic damage and can significantly impact structural 

integrity. This study develops an automated classification model utilizing deep learning to 

distinguish between spalling and non-spalling cases in concrete structures. The proposed 

method employs transfer learning with ResNet50 and EfficientNet-B3 to optimize accuracy 

and inference efficiency. The dataset, collected from real-world post-earthquake 

reconnaissance, consists of high-resolution images categorized into spalling and non-spalling 

classes. Key preprocessing techniques, including pixel normalization, data augmentation, and 

class balancing, were applied to improve model robustness and mitigate class imbalance 

issues. Performance evaluation showed that ResNet50 outperforms EfficientNet-B3 in overall 

accuracy (77% vs. 71%), while EfficientNet-B3 achieved higher recall (90% vs. 85%), 

making it more sensitive to detecting spalling cases. The study highlights the challenges 

posed by dataset variability and proposes future enhancements such as advanced 

augmentation, multi-modal data integration, and self-supervised learning. The findings 

contribute to the advancement of AI-driven structural health monitoring, offering an efficient 

tool for rapid post-disaster damage assessment. 
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1. INTRODUCTION  

Earthquakes pose a severe threat to built environments, 

often causing extensive structural damage that 

compromises safety and functionality. Among the various 

failure mechanisms observed in post-earthquake 

assessments, spalling is one of the most critical indicators 

of structural distress [1]. Spalling refers to the detachment 

of surface material layers, primarily affecting concrete and 

masonry structures. This phenomenon not only weakens 

the cross-sectional integrity of the material but also 

accelerates the corrosion of embedded steel 

reinforcements, further deteriorating structural stability. 

Accurate detection and classification of spalling are 

therefore crucial for post-disaster evaluations and the 

development of effective mitigation strategies. 

Spalling can be caused by multiple factors, including 

chemical reactions, mechanical stress, and thermal 

expansion. However, in the context of earthquakes, 

spalling primarily results from intense seismic loading, 

which disrupts material cohesion and leads to localized 

failure [2]. The ability to rapidly and accurately identify 

spalling in damaged structures is essential for guiding 

emergency response, informing engineers and 

policymakers, and ensuring efficient disaster recovery 

efforts. Most of the spalling images analyzed in this study 

are sourced from real-world post-earthquake 

reconnaissance efforts, capturing the true extent of 

damage under various seismic conditions. 

To address this issue, this study formulates spalling 

detection as a binary classification problem, distinguishing 

between spalling and non-spalling materials using deep 

learning techniques [3]. The proposed approach leverages 

transfer learning with ResNet50 and EfficientNet-B3, two 

state-of-the-art convolutional neural networks (CNNs) 

known for their feature extraction capabilities. In addition 

to using a well-structured dataset, the study incorporates 

advanced preprocessing techniques—including data 

normalization, augmentation, and class balancing—to 

enhance model generalization and mitigate dataset biases. 

The results of this study demonstrate that deep learning 

can significantly enhance the accuracy and efficiency of 

post-earthquake structural assessments. By automating 

damage classification, this approach reduces manual 

inspection efforts and accelerates decision-making 

processes in disaster response and structural rehabilitation. 

Future enhancements, such as multi-modal data 

integration and self-supervised learning, could further 

improve model robustness, making AI-driven structural 

health monitoring a more reliable tool in post-disaster 

scenarios. 

Compared to previous research on surface damage 

detection [4-6], which predominantly utilized traditional 

machine learning models such as Support Vector 

Machines (SVM), Random Forests, or shallow 

Convolutional Neural Networks (CNNs), this study 

introduces several significant advancements. Unlike 

earlier methods that often relied on handcrafted features 

and struggled with generalization under varying field 

conditions, we leverage state-of-the-art deep transfer 

learning architectures—ResNet50 and EfficientNet-B3—

pretrained on large-scale datasets. Furthermore, we 

incorporate dynamic threshold calibration and class-

weighted loss functions to address dataset imbalance and 

improve sensitivity toward minority classes (spalling 

damage). 

In addition to model optimization, this study 

systematically compares the proposed deep learning 

approaches against traditional baseline classifiers, 

demonstrating superior robustness, accuracy, and 

scalability under real-world post-earthquake imagery 

conditions. These enhancements contribute to advancing 

automated post-disaster assessment systems by making 

them more reliable, interpretable, and practical for field 

deployment. 

2. MATERIALS AND RESEARCH METHODS 

2.1 Materials 

This study utilizes the Φ-Net dataset, a specialized 

collection of high-resolution images documenting post-

earthquake structural damage [7]. The dataset focuses on 

concrete and masonry structures, categorizing images into 

two distinct classes: spalling (SP) and non-spalling (NSP). 

Spalling images exhibit significant material loss, where 

concrete layers have detached, often exposing 

reinforcement bars—an indication of severe structural 

deterioration. In contrast, non-spalling images primarily 

feature surface cracking without major material 

degradation [8-9], representing structures that, while 

damaged, retain their overall integrity. 

The dataset was compiled through real-world post-

earthquake reconnaissance efforts, ensuring that it 

accurately reflects a broad spectrum of damage scenarios 

[10-12]. This diversity enhances the model’s ability to 

generalize across different seismic conditions, reducing 

biases that could arise from training on artificially curated 

datasets. Given the high variability in structural damage 

patterns, the Φ-Net dataset provides a robust foundation 

for training machine learning models, enabling the 

automated classification of earthquake-induced damage. 

By leveraging this dataset, the proposed deep learning 

model can streamline post-disaster assessment efforts, 

facilitating rapid, accurate, and scalable structural 

evaluations. This automation not only improves the 

efficiency of emergency response but also aids engineers 

and policymakers in making informed decisions about 

structural rehabilitation and risk mitigation strategies. 

 
Figure 1. Specific examples of spalling (left) and non-spalling 

(right) images 

2.2 Research methods 

2.2.1 Dataset description 

To handle class imbalance, we applied a class-
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weighted loss function where higher penalties were 

assigned to misclassified spalling cases, ensuring 

balanced attention during training. Additionally, we 

recalibrated the decision threshold based on precision-

recall trade-off analysis instead of using the default 0.5 

threshold. This approach enhanced sensitivity to spalling 

detection while maintaining reasonable specificity 

This study classifies building materials into Spalling 

and Non-Spalling, key indicators of earthquake damage. 

To ensure accurate classification, we use transfer learning 

with ResNet50 and EfficientNet-B3. ResNet50 balances 

depth and efficiency, outperforming ResNet18 while 

avoiding the high computational cost of ResNet101. 

EfficientNet-B3 provides strong accuracy with optimized 

scaling, making it more practical than larger EfficientNet 

versions. Both models offer a good trade-off between 

performance and inference speed, ensuring robust and 

reliable predictions. 

2.2.2 Data preprocessing 

The training pipeline was implemented using 

PyTorch and executed on a workstation equipped with 

an NVIDIA RTX 3080 GPU. For both ResNet50 and 

EfficientNet-B3 models, we employed the Adam 

optimizer due to its adaptive learning capabilities and 

stability in convergence. The learning rate was set to 

0.0001, with a batch size of 32. The models were 

trained for a maximum of 50 epochs, and early stopping 

based on validation loss (patience = 5 epochs) was 

applied to prevent overfitting. 

Input images were resized to 224×224 pixels and 

normalized using mean and standard deviation values 

derived from the ImageNet dataset. The training-

validation split ratio was 80:20. Data augmentation 

techniques (rotation, zoom, horizontal flip, and 

brightness adjustment) were applied during training to 

improve generalization. All models were fine-tuned 

end-to-end using transfer learning, with pretrained 

weights initialized from ImageNet 

 

Figure 2. Structure of Resnet50 

The dataset was comprised of 6,898 training images 

and 837 test images, each having a size of 224×224 pixels 

and three color channels (RGB). This standardization of 

input dimensions was done in order to make the CNN 

models that were pre-trained come to a compatibility 

point since most such models demand inputs of fixed 

sizes. The dataset contained a mixture of images showing 

spalling damage and non-spalling surfaces. The class 

imbalance degree needed to address through specific 

strategies 

 
Figure 3. Data distribution 

One major preprocessing steps was normalization of 

the pixel values. The initial values of pixel intensities in 

the dataset ranged from -123.680 to 151.061. Normalizing 

these values to the range of [0, 1] is an essential step in 

deep learning pipelines that help with overall numerical 

stability, faster convergence, and improved 

generalization. When the as input values vary, so does the 

scaling, thus normalization will ensure that to prevent 

input gradients from exploding or vanishing. By scaling 

all input images to be in the same range, this ensured that 

the model would learn well without great variability in 

the pixel intensities 

 
Figure 4. Pixel value histogram 

2.2.3 Deep learning models 

A major challenge of the study was the overfitting 

risk because of the small dataset and class imbalance. 

Data augmentation has been used to break the learning of 

fine-tuned specific feature patterns in which artificial data 

is prepared by changing the available images, which helps 

the model to abstract the general patterns Rather Than 

concrete instances. And being very important for the 

binary classification of the Structural damage, under 

Real-World conditions due to changeable Lighting, 

camera viewpoint, and Occluded scenes. The introduction 

of changes such as rotation, translation, zoom, and 
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variation in brightness made the model more adaptable to 

the conditions under which the image is taken. Horizontal 

flipping helps prevent the model from acquiring a 

directional bias, while slight changes in perspective 

boosted the model to detect spalling damage for all 

different kinds of structural orientations. Collectively, 

these augmentations improved the model with respect to 

handling unseen testing data through diversification in 

training samples, making the entire learning process more 

robust 

 

 

Figure 5. Data Augmentation 

The significant issue was that there was a class 

imbalance since the images of non-spalling materials 

were more than the spalling cases. This would bias the 

model in favor of the dominant class if not corrected, 

hence, promoting more false negatives and letting 

spalling damage go undetected. Therefore, we adopted 

two strategies to achieve a balanced learning process. 

First, we tried to multiply the loss function by class 

weight so that spalling misclassified conditions receive 

more penalties than non-spalling conditions and the 

model also tries to keep an eye on both categories. 

Second, instead of the default threshold value of 0.5, we 

also recalculated the decision boundary and determined 

that through a study of the precision-recall trade-off, 

which dynamically sets the threshold at a point where the 

trade-off is achieved on both sensitivity and specificity 

towards false negative spalling damage detection. This 

improved the ability to detect spalling damage correctly 

without a significant compromise in overall accuracy 

2.2.4 Training strategy 

Preprocessing techniques, data augmentation, class 

balancing strategies, and transfer learning strategies were 

applied to develop an approach for spalling damage in 

building materials. ResNet50 and EfficientNetB3 were 

used to extract features effectively, fine-tuned with 

threshold optimization to ensure high accuracy in the 

detection of structural damages. All these methods 

combined make the model well-contexted toward 

generalization and suitable for real-world applications as 

part of post-disaster structural assessment. 

To prevent overfitting due to the small dataset size 

while fine-tuning the entire ResNet50 architecture, we 

applied a multi-step mitigation strategy. This included 

extensive data augmentation (random rotations, 

translations, zooms, and brightness variations), pixel 

normalization, and early stopping during training. These 

techniques collectively helped regularize the model and 

ensured better generalization across unseen data samples 

The left column shows raw RGB images of reinforced 

concrete columns with visible spalling areas, highlighted 

using red bounding boxes. These boxes indicate regions 

of interest where surface material has detached, exposing 

embedded steel reinforcements. The right column 

presents corresponding heatmaps generated by the 

classification model, where high-activation regions (in 

red and yellow) align with the spalling zones as shown in 

Figure 6. This visualization illustrates the model’s ability 

to accurately localize structural damage features, 

reinforcing its applicability in real-world post-earthquake 

inspection scenarios. 

 

Figure 6. Visual examples of spalling damage classification 

2.2.5 EfficientNet-B3 Architecture 

In addition to ResNet50, this study also employed 

EfficientNet-B3, a deep learning model known for its 

superior efficiency in balancing accuracy and 

computational complexity. EfficientNet-B3 utilizes a 

compound scaling method, simultaneously adjusting the 

network's depth, width, and input resolution to achieve 

optimal performance. 

The EfficientNet family is built upon a baseline 

network (EfficientNet-B0) developed through neural 

architecture search (NAS) and subsequently scaled up 

uniformly to create larger models. EfficientNet-B3 

features 24 mobile inverted bottleneck convolution 

(MBConv) blocks, organized into seven stages, with 

increasing channel width and depth as the network 

progresses. The activation function used throughout is the 

Swish function, which improves model convergence 

compared to traditional ReLU activations. 

Compared to ResNet architectures, EfficientNet-B3 

achieves comparable or better accuracy with fewer 

parameters and lower computational cost, making it 

suitable for deployment scenarios where inference speed 

and model compactness are important. 

This lightweight yet powerful structure enables 
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EfficientNet-B3 to handle complex real-world post-

earthquake datasets effectively, particularly in scenarios 

requiring high recall, such as detecting spalling damage in 

severely affected structures. 

3. RESULTS AND PERFORMANCE EVALUATION 

To assess the effectiveness of the proposed model, 

we conducted a comprehensive evaluation using multiple 

performance metrics, including the confusion matrix, 

classification report. The confusion matrix provides 

insight into the model’s ability to distinguish between 

spalling and non-spalling cases by analyzing true 

positives, false positives, true negatives, and false 

negatives. Additionally, the classification report presents 

key metrics such as precision, recall, and F1-score, which 

reflect the model's balance between sensitivity and 

specificity 

3.1 Precision and recall analysis 

Unlike conventional studies relying on standard 

thresholding, this work introduces dynamic threshold 

optimization to balance sensitivity and specificity—

particularly addressing the underrepresentation of spalling 

cases. This adjustment improves the detection of true 

spalling instances without sacrificing overall classification 

performance 

The classification reports for ResNet50 and 

EfficientNet-B3 reveal the challenges associated with 

detecting spalling damage in post-earthquake structures. 

The dataset exhibits high intra-class variability, with 

images of non-spalling surfaces including not only intact 

walls but also elements such as people, objects, and 

background noise, leading to increased misclassifications. 

Meanwhile, spalling cases vary significantly in terms of 

texture, lighting conditions, and severity, making feature 

extraction and classification more complex 

Table 1: Classification report for ResNet50 model 

Class Precision Recall F1-

Score 

Support 

Non-spalling (NSP) 0.89 0.73 0.80 527 

Spalling (SP) 0.65 0.85 0.74 310 

Accuracy 

  

0.77 837 

Macro Average 0.77 0.79 0.77 837 

Weighted Average 0.80 0.77 0.78 837 

Table 2: Classification report for EfficientNet-B3 model 

Class Precision Recall F1-

Score 

Support 

Non-spalling (NSP) 0.91 0.61 0.73 527 

Spalling (SP) 0.57 0.90 0.70 310 

Accuracy   0.71 837 

Macro Average 0.74 0.75 0.71 837 

Weighted Average 0.78 0.71 0.72 837 

ResNet50 achieves a more balanced classification 

performance, with an F1-score of 0.80 for non-spalling 

(NSP) and 0.74 for spalling (SP) as shown in Table 1. The 

precision for non-spalling (0.89) is higher, indicating that 

when the model predicts a surface as non-spalling, it is 

likely to be correct. However, its recall for non-spalling 

(0.73) is lower, meaning that some non-spalling cases are 

incorrectly classified as spalling. Conversely, ResNet50 

exhibits better recall for spalling (0.85), making it more 

sensitive to detecting actual damage, though at the cost of 

lower precision (0.65), which results in some false 

positives. 

EfficientNet-B3, on the other hand, excels in detecting 

spalling cases with a higher recall of 0.90 as shown in 

Table 2. This makes it more reliable in ensuring that 

actual structural damage is not overlooked, which is 

critical in post-disaster evaluations. However, this comes 

at the expense of lower precision (0.57) for spalling, 

leading to more false positives where intact structures are 

misclassified as damaged. Additionally, its recall for non-

spalling is significantly lower (0.61) compared to 

ResNet50, meaning a greater number of intact structures 

are misclassified as spalling. This results in an F1-score of 

0.70 for spalling and 0.73 for non-spalling, contributing to 

its overall lower accuracy of 71% compared to 77% for 

ResNet50. 

To mitigate these classification challenges, several 

strategies were employed: 

 Data augmentation improved model 

generalization, ensuring robustness to real-world 

variations in lighting, texture, and perspective. 

 Class weight balancing addressed the inherent 

class imbalance, preventing the model from 

favoring the majority class. 

 Normalization techniques ensured consistent 

input scaling, stabilizing the training process and 

enhancing feature extraction. 

These findings underscore the trade-offs between 

precision and recall in structural damage classification 

models. While ResNet50 provides a more balanced 

performance, EfficientNet-B3 demonstrates superior 

sensitivity to spalling detection, making it more suitable 

for applications where minimizing false negatives is 

crucial. Future research should focus on hybrid model 

ensembling, self-supervised learning, and multi-modal 

data integration to further enhance the reliability of 

automated post-earthquake structural assessments. 

We monitored both training (see Figure 7) and 

validation (see Figure 8) metrics closely to assess the risk 

of overfitting. The relatively small gap in F1-scores and 

classification accuracy between training and test sets 

indicates that overfitting was successfully mitigated 

through regularization and controlled training dynamics 
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Figure 7. Training and validation loss 

Figure 7 presents the training and validation loss 

curves, which demonstrate a steady and synchronized 

decline over epochs. The absence of significant 

divergence between the two curves indicates effective 

training dynamics and suggests that overfitting was 

successfully mitigated through the applied regularization 

strategies, such as data augmentation, early stopping, and 

class balancing. 

 

Figure 8. Training and validation 

Figure 8 shows the training and validation accuracy 

progression. The accuracy increases consistently during 

the initial epochs and stabilizes after approximately epoch 

15. Notably, the narrow gap between training and 

validation accuracy highlights the model’s ability to 

generalize well to unseen data. This further confirms that 

the fine-tuning of the full ResNet50 model did not lead to 

overfitting, even under the constraints of a relatively small 

dataset. 

3.2 Confusion matrix interpretation 

The confusion matrices for ResNet50 and 

EfficientNet-B3 illustrate the classification performance 

of both models in distinguishing spalling (SP) and non-

spalling (NSP) cases under an optimal threshold setting. 

These results highlight key differences in model behavior 

and their strengths in post-earthquake structural 

assessment as shown in Figure 9. ResNet50 demonstrates 

a more balanced classification performance, correctly 

identifying 385 non-spalling cases, while misclassifying 

142 non-spalling instances as spalling. For spalling cases, 

it correctly detects 263 instances but fails to identify 47 

true spalling cases, leading to false negatives. ResNet50’s 

skip connections play a crucial role in maintaining 

gradient flow, effectively capturing complex patterns 

necessary for distinguishing spalling from non-spalling 

structures. 

On the other hand, EfficientNet-B3 exhibits a 

different trade-off. It correctly classifies 278 spalling 

cases, outperforming ResNet50 in terms of spalling recall, 

with only 32 false negatives as shown in Figure 10. 

However, EfficientNet-B3 struggles with non-spalling 

cases, misclassifying 207 instances, which is significantly 

higher than ResNet50’s misclassification rate. This 

suggests that EfficientNet-B3 is more sensitive to 

detecting damage but at the cost of generating more false 

positives, which could lead to unnecessary interventions 

in non-damaged structures. 

 
Figure 9. Resnet50 Confusion Matrix 

 
Figure 10. EfficientNet-B3 Confusion Matrix 

To address these challenges, several techniques were 

implemented: 

 Data augmentation enhanced model 

generalization, improving its ability to classify 

unseen real-world damage scenarios. 

 Class weight balancing adjusted the model’s 

sensitivity to underrepresented classes, 

mitigating bias towards the dominant category. 

 Normalization stabilized the training process, 

ensuring consistent and reliable feature 

extraction. 

Key Observations 

 ResNet50 provides a better balance between 

precision and recall, making it more suitable for 

applications where both correct damage 

detection and minimizing false positives are 

important. 

 EfficientNet-B3 excels in detecting spalling 

cases, ensuring fewer false negatives but at the 

cost of lower precision, which may lead to 

increased misclassification of intact structures. 

 The trade-off between false positives and false 

negatives highlights the importance of selecting 
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a model based on the specific priorities of 

structural assessment—whether prioritizing 

accurate damage detection or minimizing 

unnecessary interventions. 

 

Figure 11. Comparative analysis of classification metrics 

between ResNet50 and EfficientNet-B3 

Figure 11 summarizes and visualizes the key 

performance metrics—Accuracy, Precision, Recall, and 

F1-score—for both ResNet50 and EfficientNet-B3. As 

shown, ResNet50 outperforms EfficientNet-B3 in terms 

of overall accuracy (77% vs. 71%), precision (65% vs. 

57%), and F1-score (74% vs. 70%). These results suggest 

that ResNet50 provides a more balanced performance, 

reducing false positives while maintaining strong 

sensitivity to structural damage.EfficientNet-B3, on the 

other hand, achieves higher recall (90% vs. 85%), 

demonstrating greater sensitivity to detecting spalling 

cases. This makes it a strong candidate for scenarios 

where minimizing false negatives is a priority, such as 

early damage warning systems or safety-critical 

applications. By presenting a side-by-side visual 

comparison of all major evaluation metrics, this figure 

facilitates a more informed model selection depending on 

the specific deployment priorities—whether prioritizing 

detection sensitivity or classification reliability. 

Future research should explore hybrid model 

ensembling, where both architectures complement each 

other, as well as threshold optimization strategies to 

refine classification boundaries. Integrating self-

supervised learning and multi-modal data sources could 

further enhance model robustness for real-world structural 

health monitoring applications. 

3.3 Models comparison 

This study provides technical contributions beyond 

architecture choice by introducing a customized threshold 

tuning mechanism and leveraging precision-recall 

calibration for better minority class handling. Compared 

to earlier work that employed either manual inspection or 

shallow CNNs, this approach offers improved robustness 

under real-world variations in lighting, occlusion, and 

dataset imbalance 

The comparative analysis of ResNet50 and 

EfficientNet-B3 highlights the trade-offs between 

accuracy, precision, and recall in detecting spalling (SP) 

and non-spalling (NSP) cases. As shown in Table 10, each 

model exhibits distinct strengths and weaknesses, making 

them suitable for different objectives in post-earthquake 

structural assessments. 

ResNet50 demonstrates superior overall accuracy 

(77%) compared to EfficientNet-B3 (71%), which 

translates to a better balance between detecting damage 

and minimizing misclassifications. This performance 

advantage stems from its skip connections, which enhance 

gradient flow and facilitate deeper feature extraction, 

crucial for differentiating between spalling and non-

spalling structures. 

In terms of precision, ResNet50 achieves 65% for 

spalling detection, significantly higher than EfficientNet-

B3’s 57%. This indicates that ResNet50 produces fewer 

false positives, reducing the likelihood of mistakenly 

classifying intact structures as damaged. However, 

EfficientNet-B3 compensates with a higher recall (90% 

vs. 85%), meaning it is more sensitive to detecting actual 

spalling cases, ensuring fewer missed instances of 

structural damage. 

The F1-score, which balances precision and recall, 

remains slightly higher for ResNet50 (74%) compared to 

EfficientNet-B3 (70%), reinforcing its stability across 

both metrics. EfficientNet-B3, despite its ability to capture 

more damaged cases, struggles with a higher number of 

false positives (207 compared to 142 in ResNet50), which 

could lead to unnecessary interventions in non-damaged 

structures. 

 

Figure 12. Receiver operating characteristic (ROC) curve 

 
Figure 13. Confusion matrix - ResNet50 

To further evaluate the classification performance of 

the ResNet50 model, we analyzed the Receiver Operating 

Characteristic (ROC) curve and computed the Area Under 

the Curve (AUC). As shown in Figure 12, the ROC curve 
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demonstrates strong discriminatory power with an AUC of 

0.91, indicating that the model effectively distinguishes 

between spalling and non-spalling cases. 

Additionally, the confusion matrix (see Figure 13) 

provides insight into the model’s classification behavior, 

showing 263 true positives and 385 true negatives. While 

the model does exhibit some false positives (142) and 

false negatives (47), the overall pattern supports a well-

balanced detection capability with a preference toward 

sensitivity, as intended. These visualizations confirm the 

model’s suitability for real-world post-earthquake damage 

assessment tasks. 

Table 3: Comparison of ResNet50 and EfficientNet-B3 

Metric ResNet50 EfficientNet-B3 

True Negative (TN) 385 320 

False Positive (FP) 142 207 

False Negative (FN) 47 32 

True Positive (TP) 263 278 

Accuracy 77% 71% 

Precision (SP) 65% 57% 

Recall (SP) 85% 90% 

F1-Score (SP) 74% 70% 

The comparative analysis of ResNet50 and 

EfficientNet-B3 reveals distinct strengths that can be 

leveraged based on the specific requirements of post-

earthquake structural assessments as shown in Table 3. 

ResNet50 demonstrates superior precision, making it 

particularly suitable for applications where minimizing 

false positives is critical, such as avoiding unnecessary 

structural interventions and reducing false alarms in 

disaster response scenarios. In contrast, EfficientNet-B3 

achieves a higher recall, ensuring that as many spalling 

cases as possible are identified, even at the cost of 

increased false positives. This characteristic makes it 

advantageous in contexts where detecting all potential 

damage is the priority, preventing the risk of overlooking 

structurally compromised buildings. 

The selection of an optimal model depends on the 

balance between precision and recall, which is dictated by 

the objectives of post-disaster evaluation strategies. To 

further enhance classification performance, future 

research should explore hybrid ensemble models that 

integrate the precision of ResNet50 with the recall of 

EfficientNet-B3, thereby optimizing both sensitivity and 

specificity. Additionally, threshold optimization strategies 

can refine classification boundaries, reducing the trade-off 

between false positives and false negatives. Integrating 

multi-modal data sources, such as LiDAR or infrared 

imaging, could further improve model robustness by 

incorporating additional structural features that are not 

easily captured through standard RGB imagery. These 

advancements contribute to the ongoing development of 

AI-driven structural health monitoring systems, enhancing 

their reliability and scalability for disaster resilience and 

rapid post-earthquake damage assessment. 

 
Figure 14. Precision–Recall Trade-off Curve between ResNet50 

and EfficientNet-B3 

Figure 14 presents the precision-recall trade-off 

curves for ResNet50 and EfficientNet-B3 across varying 

threshold values. As illustrated, ResNet50 maintains 

higher precision over a wide range of recall values, 

whereas EfficientNet-B3 consistently yields higher recall, 

particularly in the range above 0.85. This trade-off 

highlights the distinct behavior of the two models: 

ResNet50 is more conservative, reducing false positives 

and thereby achieving higher precision, while 

EfficientNet-B3 prioritizes minimizing false negatives, 

making it more sensitive to detecting true damage cases. 

This visualization provides a valuable perspective for 

model selection based on specific application goals. For 

instance, in scenarios where false positives must be 

minimized—such as avoiding unnecessary post-disaster 

interventions—ResNet50 is more suitable. Conversely, if 

the priority is to capture as many damage cases as 

possible, even at the cost of occasional misclassifications, 

EfficientNet-B3 offers superior recall performance. The 

figure thus supports a more informed and context-specific 

choice of model for structural damage assessment tasks. 

The precision-recall trade-off illustrated in Figure 14 

underscores the importance of threshold selection in real-

world deployments. In operational environments—such as 

post-earthquake inspections—false negatives (missed 

damage) can pose serious safety risks, while excessive 

false positives (misclassified intact structures) may lead to 

unnecessary repairs and resource allocation. Therefore, 

model performance should not only be evaluated by 

overall accuracy, but also by how well it balances 

precision and recall according to the practical objectives. 

Factors such as environmental noise, lighting 

variability, occlusions, and camera perspectives further 

amplify the significance of threshold calibration and 

sensitivity tuning. A model optimized for controlled 

datasets may underperform when exposed to field 

conditions if its trade-off parameters are not carefully 

adapted. By explicitly addressing these considerations, 

this study contributes to a more robust understanding of 

how deep learning models behave under real-world 

constraints, enabling practitioners to make informed 

decisions when deploying AI-driven assessment tools in 

disaster-prone areas. 
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3.4 Explainability analysis 

To enhance the interpretability and trustworthiness 

of the proposed deep learning models, we employed 

Gradient-weighted class activation mapping (Grad-CAM) 

as a post hoc explainability technique. Grad-CAM 

visualizes the contribution of different image regions to 

the model’s final classification decision by computing the 

gradients of the target class with respect to the 

convolutional feature maps. Figure 6 presents 

representative heatmaps generated using Grad-CAM, 

where warmer colors indicate stronger model attention. 

These activation regions align closely with spalling zones 

(e.g., exposed rebars or missing surface layers), 

confirming that the model relies on structurally 

meaningful cues rather than spurious features. This level 

of transparency is crucial in structural health monitoring 

applications, as it allows engineers to verify and trust AI-

generated assessments, thereby improving decision-

making reliability in post-disaster scenarios. 

To comprehensively assess the effectiveness of the 

proposed deep learning models, we conducted a 

comparative evaluation with three baseline classifiers: 

Support Vector Machine (SVM), Random Forest (RF), 

and a lightweight Convolutional Neural Network (CNN-

3Conv) consisting of three convolutional layers. All 

models were trained and validated on the same dataset 

using identical preprocessing and class balancing 

techniques to ensure a fair comparison. 

To further validate the effectiveness of the proposed 

deep learning models, we conducted a comparative 

evaluation with traditional baseline classifiers, including: 

 Support vector machine (SVM) with radial basis 

function kernel 

 Random forest (RF) classifier with 100 

estimators 

 A lightweight CNN model (CNN-3Conv) with 

three convolutional layers and ReLU activations 

All baseline models were trained on the same 

preprocessed dataset. For SVM and RF, we used flattened 

grayscale image vectors as input. For CNN-3Conv, the 

input resolution was kept at 224×224 with RGB channels. 

The following table summarizes the classification 

performance: 

 

Figure 15. Comparative performance of baseline and deep 

learning models 

As shown in Figure 15, both ResNet50 and 

EfficientNet-B3 consistently outperform the baseline 

models across all key evaluation metrics, including 

accuracy, precision, recall, and F1-score. In particular, 

ResNet50 achieves the highest F1-score (0.74), 

demonstrating a well-balanced performance in correctly 

detecting spalling without producing excessive false 

positives. EfficientNet-B3 achieves the highest recall 

(0.90), making it especially effective in minimizing false 

negatives, which is critical in post-earthquake safety 

assessments. 

In contrast, traditional classifiers such as SVM and 

Random Forest perform significantly lower, especially in 

precision and F1-score, indicating limited capacity in 

handling the complex visual variability of spalling under 

real-world conditions. While the CNN-3Conv model 

achieves modest improvements over traditional baselines, 

it still falls short compared to the transfer learning models 

in both generalization and robustness. 

These findings reinforce the necessity of using deep 

convolutional architectures with pre-trained weights when 

addressing high-variance structural damage detection 

tasks in safety-critical applications. 

The results clearly indicate that while traditional 

models offer a reasonable baseline, they struggle with 

generalization under noisy and diverse real-world 

imagery. Deep architectures like ResNet50 and 

EfficientNet-B3 not only achieve superior accuracy but 

also demonstrate better balance between precision and 

recall, particularly in detecting spalling regions. This 

validates the importance of using deep transfer learning 

models in post-earthquake damage assessment tasks. 

4. CONCLUSION 

This study assessed the effectiveness of ResNet50 

and EfficientNet-B3 in automating the classification of 

spalling damage in post-earthquake structures. The results 

highlight the challenges posed by a highly variable 

dataset, where intra-class diversity and background noise 

complicate feature extraction. The non-spalling class 

contained a mix of intact structures, objects, and unrelated 

elements, leading to misclassifications, while spalling 

cases exhibited diverse surface textures, lighting 

conditions, and varying degrees of severity, further 

increasing classification complexity. 

To address these challenges, the study implemented 

data augmentation, class balancing, and normalization 

techniques, which significantly enhanced model 

performance. ResNet50 achieved a higher overall 

accuracy (77%) and better precision, making it more 

reliable in minimizing false alarms, whereas EfficientNet-

B3 exhibited superior recall (90%), ensuring that damaged 

structures were effectively identified, albeit with a higher 

false positive rate. These findings underscore the trade-off 

between precision and recall, highlighting the importance 

of selecting models based on the specific priorities of 

post-earthquake damage assessments. 

Despite the improvements achieved, several 

limitations remain. The dataset imbalance and 

environmental variations continue to impact model 

performance, suggesting the need for further refinements. 

Future research should focus on advanced augmentation 

strategies, domain-specific feature engineering, and hybrid 

model ensembling to enhance classification accuracy. 

Additionally, exploring modern architectures such as 



Automated detection of concrete spalling in post-earthquake structures using deep learning 

 

80 JSLHU, Issue 22, September 2025 

 

Vision Transformers (ViTs) could improve feature 

representation, particularly in highly unstructured and 

noisy datasets. 

Beyond model optimization, integrating multi-modal 

data sources, such as LiDAR, infrared imaging, or 

accelerometer-based structural data, could provide a more 

comprehensive framework for AI-driven structural health 

monitoring. Moreover, deploying lightweight models on 

edge devices would facilitate real-time damage detection 

in post-disaster environments, enabling faster and more 

efficient emergency response efforts. The incorporation of 

self-supervised learning techniques could further enhance 

model adaptability to diverse earthquake-induced damage 

patterns, improving the scalability and reliability of 

automated damage assessment systems. These 

advancements would contribute to the development of 

more robust, AI-powered structural health monitoring 

solutions, making post-earthquake damage evaluation 

faster, more accurate, and scalable for real-world disaster 

resilience applications. 

Future directions include the integration of hybrid 

ensembling models that combine the high recall of 

EfficientNet-B3 with the precision of ResNet50. 

Additionally, advanced augmentation strategies and self-

supervised learning are recommended to enhance 

robustness in field deployment scenarios 
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